Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 000000000000

Development economics

Lecture 8: The role of culture and institutions in economic development (social capital)

Vojtěch Bartoš

LMU, May 5, 2021

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 0000000000000

Where are we on our path?

Lectures

- 1. Introduction
- 2. Traditional growth models
- 3. Modern (endogenous) growth models
- 4. Taking stock on growth models and poverty traps
- 5. Games in economic development
- 6. Measuring poverty and inequality
- 7. Group differences and discrimination
- 8. Culture, institutions, and the role of history
- 9. Health and nutrition
- 10. Education
- 11. The role of foreign aid
- 12. Credit markets and microcredit
- 13. Risk and insurance
- 14. Behavioral development economics

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence 0000000000000

Role of institutions in economic development

Wealth differences reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Slave trade, state capacity, culture, and wealth of nations

Culture, trust, and persistence of institutions

Understanding persistence of institutions

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 00000000000000

Growth reexamined

► In previous lectures we have shown:

- ► Huge differences in savings across rich and poor countries
- Dramatic differences in investment in human capital across countries

Very low usage of efficient technologies in poor countries

Enormous differences in economic well-being within countries

- But we did not provide an ultimate answer to the question why the differences arise:
 - ► Why low savings?
 - Why low investment in education?
 - Why so little technology adoption?
 - Why persistent inequalities?
- Potentital causes: Institutions

What are institutions?

- North (1990, p. 3): "Institutions are the rules of the game in a society or, more formally, are the humanly devised constraints that shape human interaction."
 - ► Recall: economics → people respond to incentives. Institutions help shape incentives.
- Distinguish between:
 - Formal institutions: codified rules (passed by governments, local administration)
 - Informal institutions: related to how formal institutions are used, social norms and their enforcement.

Culture 0000000000 Persistence

Why we need institutions?

Securing **property rights**:

- Constraints on politicians, elites, and everyone to prevent expropriation of others' properties.
- Properties: both physical (land, buildings, machines...), and intellectual (inventions, patents...)
- Contract enforcement:
 - ► What is written will actually be delivered.
 - Important update: Now I'm deducting half of the class to the left 20% of their final exam grades. What do you think about this?

► No exclusion of citizens from participation on the above.

Institutions Wealth differences Far

Factor endowments

Slave trade

Culture 0000000000

Why we need institutions?

- De Soto (2000, p. 15): "Imagine a country nobody can identify who owns what, addresses cannot be easily verified, people cannot be made to pay their debts, resources cannot conveniently be turned into money, ownership cannot be divided into shares, descriptions of assets are not standardized and cannot be easily compared, and the rules that govern property vary from neighborhood to neighborhood or even street to street. You have just put yourself into life of developing country or a former communist nation."
- "This 80 percent majority is not [...] desperately impoverished. [...] When leaving the door of Nile Hilton, what you are leaving behind is not the high-technology world. [...] The people of Cairo have access to all these things. [...] What you are really leaving behind is the world of legally enforceable transactions on property rights."

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 000000000000

Property rights and wealth

FIGURE 2. OLS RELATIONSHIP BETWEEN EXPROPRIATION RISK AND INCOME

Source: Acemoglu, Johnson, and Robinson (2001)

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 000000000000

Corruption and wealth

Source: The Economist (2006)

 Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence 00000000000000

Role of institutions in economic development

Wealth differences reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Slave trade, state capacity, culture, and wealth of nations

Culture, trust, and persistence of institutions

Understanding persistence of institutions

 Factor endowments

Slave trade

Culture 0000000000 Persistence 0000000000000

Hall and Jones (1999): Why Do Some Countries Produce So Much More Output Per Worker Than Others?

- Differences in per capita income across countries due to differences in *social infrastructure*?
- ► Model: Social infrastructure → Inputs and productivity → Per capita outcome
 - ▶ Note: focus on wealth levels, not growth!
- ► When social infrastructure missing:
 - Private diversion (mafia, robberies)
 - Government diversion (expropriation, confiscatory taxation, corruption)

Extreme cases: Niger vs. USA — social infrastructure able to explain the 35x difference between per capita incomes

Wealth differences

Factor endowments

Slave trade

Culture 0000000000

Persistence 000000000000

Hall and Jones (1999): Why Do Some Countries Produce So Much More Output Per Worker Than Others?

Production function:

$$Y_i = K_i^{\alpha} (A_i H_i)^{1-\alpha}$$

• $K_i \ldots$ capital stock

► *H_i*... human capital stock

• where $H_i = e^{\theta(E_i)}L_i$

• $\theta(E_i)$... returns to education as in Mincer (1974)

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000

Hall and Jones (1999):

Production function:

$$Y_i = K_i^{\alpha} (A_i H_i)^{1-\alpha}$$

To decompose causes of wealth econometrically do:

$$Y_i^{\frac{1}{1-\alpha}} = \left[K_i^{\alpha}(A_iH_i)^{1-\alpha}\right]^{\frac{1}{1-\alpha}}$$

$$Y_{i}^{\frac{1-\alpha}{1-\alpha}} \times Y_{i}^{\frac{\alpha}{1-\alpha}} = K_{i}^{\frac{\alpha}{1-\alpha}} A_{i} H_{i}$$

$$Y_i = \left(\frac{K_i}{Y_i}\right)^{\frac{\alpha}{1-\alpha}} A_i H_i$$

• Now rearrange to per capita (L_I) as follows:

$$y_i = \left(\frac{K_i}{Y_i}\right)^{\frac{\alpha}{1-\alpha}} h_i A_i$$

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 000000000000

Hall and Jones (1999):

$$y_i = \left(\frac{K_i}{Y_i}\right)^{\frac{\alpha}{1-\alpha}} h_i A_i$$

Can be decomposed into:

- differences in capital-output ratios
- differences in average human capital
- differences in productivity
- Productivity can be calculated as:

$$log(A_i) = log(y_i) - \frac{\alpha}{1-\alpha} log(\frac{K_i}{Y_i}) - log(h_i)$$

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence 00000000000000

Hall and Jones (1999): Decomposing wealth

		Contribution from			
Country	Y/L	$(K/Y)^{\alpha/(1-\alpha)}$	H/L	Α	
United States	1.000	1.000	1.000	1.000	
Canada	0.941	1.002	0.908	1.034	
Italy	0.834	1.063	0.650	1.207	
West Germany	0.818	1.118	0.802	0.912	
France	0.818	1.091	0.666	1.126	
United Kingdom	0.727	0.891	0.808	1.011	
Hong Kong	0.608	0.741	0.735	1.115	
Singapore	0.606	1.031	0.545	1.078	
Japan	0.587	1.119	0.797	0.658	
Mexico	0.433	0.868	0.538	0.926	
Argentina	0.418	0.953	0.676	0.648	
U.S.S.R.	0.417	1.231	0.724	0.468	
India	0.086	0.709	0.454	0.267	
China	0.060	0.891	0.632	0.106	
Kenya	0.056	0.747	0.457	0.165	
Zaire	0.033	0.499	0.408	0.160	
Average, 127 countries:	0.296	0.853	0.565	0.516	
Standard deviation:	0.268	0.234	0.168	0.325	
Correlation with Y/L (logs)	1.000	0.624	0.798	0.889	
Correlation with A (logs)	0.889	0.248	0.522	1.000	

 TABLE I

 PRODUCTIVITY CALCULATIONS: RATIOS TO U. S. VALUES

The elements of this table are the empirical counterparts to the components of equation (3), all measured as ratios to the U. S. values. That is, the first column of data is the product of the other three columns.

Source: Hall and

5/70

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 000000000000

Hall and Jones (1999): Productivity and wealth

FIGURE I Productivity and Output per Worker

Source: Hall and Jones (1999)

Wealth differences

Factor endowments

Culture 0000000000

Persistence 0000000000000

Hall and Jones (1999): Social infrastructure

- But: Why do capital and productivity differ across countries?
 - Productive activities vulnerable to predation (need for protection and/or lower investment in otherwise profitable activities because of insecurity; diversion as a tax)
- Measuring social infrastructure: $S_i = \frac{GADP_i + IT_i}{2}$
 - Index of government antidiversion policies (GADP): combines

 law and order, (ii) bureaucratic quality, (iii) corruption, (iv) risk of expropriation, (v) government repudiation of contracts
 - 2. Openness to international trade (tariffs and quotas as opportunities for diversion)
 - 2.1 Sachs-Warner index: how many years between 1950-1994 a country open: (i) non-tariff barriers cover less than 40% of trade, (ii) average tariff rates less than 40%, (iii) black mkt premium less than 20%, (iv) non-socialist country, (v) no government monopoly on major exports.

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence 000000000000

Hall and Jones (1999): Social infrastructure

► Original model: Social infrastructure → Inputs and productivity → Per capita outcome

$$\log(y_i) = \alpha + \beta S_i + \varepsilon_i$$

Note: use restricted model with forced same coefficient for both measures of social infrastructure

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 000000000000

Hall and Jones (1999): Social infrastructure and wealth

FIGURE II Social Infrastructure and Output per Worker

Source: Hall and Jones (1999)

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000

Hall and Jones (1999): Identification?

▶ But what if: Per capita outcome → Social infrastructure (i.e. endogeneity of social infrastructure)

$$S_i = \gamma + \delta \log(y_i) + X\theta + u_i$$

Q: Why might social infrastructure be endogenous?
 Solution: Instrumental variables

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 0000000000000

Hall and Jones (1999): Instruments

Instruments used:

- Distance from the equator Europeans settled permanently in areas with similar climate (references to working paper resulting in Sokolof and Engerman, 2000; plus see Acemoglu, Johnson and Robinson, 2001)
- Which languages are spoken as first languages (English, French, Spanish, Portuguese, German) — colonising countries set up different institutions (extractive vs. inclusive)

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence 000000000000

Hall and Jones (1999): First stage

	Dependent variables		
Regressors	Social infrastructure	Log (output per worker)	
Distance from the equator, (0,1) scale	0.708	3.668	
	(.110)	(.337)	
Log of Frankel-Romer predicted trade share	0.058	0.185	
	(.031)	(.081)	
Fraction of population speaking English	0.118	0.190	
	(.076)	(.298)	
Fraction of population speaking a European			
language	0.130	0.995	
	(.050)	(.181)	
R^2	.41	.60	

TABLE III REDUCED-FORM REGRESSIONS

N=127. Standard errors are computed using a bootstrap method, as described in the text. A constant term is included but not reported.

Wealth differences

Factor endowments 0000000 Slave trade

Culture 0000000000 Persistence 00000000000000

Hall and Jones (1999): Results

TABLE II BASIC RESULTS FOR OUTPUT PER WORKER $\log Y/L = \alpha + \beta \tilde{S} + \tilde{\epsilon}$

Specification	Social infrastructure	OverID test <i>p</i> -value test result	Coeff test <i>p</i> -value test result	$\hat{\sigma}_{\tilde{\varepsilon}}$
1. Main specification	5.1432	.256	.812	.840
	(.508)	Accept	Accept	
Alternativ	e specifications to	check robustnes	8	
2. Instruments:	4.998	.208	.155	.821
Distance, Frankel-Romer	(.567)	Accept	Accept	
3. No imputed data	5.323	.243	.905	.889
79 countries	(.607)	Accept	Accept	
4. OLS	3.289	_	.002	.700
	(.212)		Reject	

The coefficient on Social infrastructure reflects the change in log output per worker associated with a non-unit increase in measure of social infrastructures. For example, the coefficient of 5.14 means than a difference of 0.1 in our measure of social infrastructure is associated with a 5.14 percent difference in output per worker. Standard errors are computed using a boolstrap method, as described in the text. The main specification uses distance from the equator, the Frankel-Komer instrument, the fraction of the population as instruments. The OverDI but column reports the result of testing the versificatifying restrictions, and the Coefficient reports the result of testing of YL is 1.078.

Source: Hall and Jones (1999)

- For OLS: 0.01 increase in S_i is associated with an increase in per capita output of 3.29 percent
- For 2SLS: 0.01 increase in S_i is associated with an increase in per capita output of 5.14 percent

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence 0000000000000

Hall and Jones (1999): Results by component

 TABLE IV

 RESULTS FOR log K/Y, log H/L, and log A

 Component = $\alpha + \beta \tilde{S} + \tilde{\epsilon}$

	Dependent variable			
	$\frac{\alpha}{1-\alpha}\log K/Y$	$\log H/L$	$\log A$	
Social infrastructure	1.052	1.343	2.746	
	(.164)	(.171)	(.336)	
OverID test (p)	.784	.034	.151	
Test result	Accept	Reject	Accept	
σ̂ē	.310	.243	.596	
$\hat{\sigma}_{Depvar}$.320	.290	.727	

Estimation is carried out as in the main specification in Table II. Standard errors are computed using a bootstrap method, as described in the text.

Factors of Variation: Maximum/Minimum					
	Y/L	$(K/Y)^{\alpha/(1-\alpha)}$	H/L	A	
Observed factor of variation	35.1	4.5	3.1	19.9	
Ratio, 5 richest to 5 poorest countries	31.7	1.8	2.2	8.3	
Predicted variation, only measurement error	38.4	2.1	2.6	7.0	
Predicted variation, assuming $r_{\tilde{S},S}^2 = .5$	25.2	1.9	2.3	5.6	

TABLE V						
FACTORS OF VARIATION: MAXIMUM/MININ	IUM					

The first two rows report actual factors of variation in the data, first for the separate components and then for the geometric average of the five richest and five poorest countries (sorted according to Y/L). The last two rows report predicted factors of variation based on the estimated range of variation of true social infrastructure. Specifically, these last two rows report exp $(r\beta_{FI}/S_{max} - \hat{S}_{min})$, first with r = .800 and second with $\rho^2 = .5$.

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 000000000000

Hall and Jones (1999): Summary

- Large variation in output per worker across countries only partially explained by differences in physical capital and educational attainment; large unexplained residual
- ► Social infrastructure ⇒ large differences in capital accumulation, educational attainment, and productivity; and hence income
- Social infrastructure adoption partially related to historical influence of Western Europe (see next)

Wealth differences

Factor endowments •000000 Slave trade

Culture 0000000000 Persistence 00000000000000

Role of institutions in economic development

Wealth differences reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Slave trade, state capacity, culture, and wealth of nations

Culture, trust, and persistence of institutions

Understanding persistence of institutions

Wealth differences

Factor endowments 000000 Slave trade

Culture 0000000000

Sokoloff and Engerman (2000)

- But why do countries have different levels of social infrastructure (or social capital)?
- US and Canada now among richest countries in the world. Central and South America rather considered a laggard.
- But from a historical perspective we would foresee a different story:
 - Voltaire: French and British fighting over North America during Seven Years' War (1756-63): madness, this "fighting over a few acres of snow."
 - ► After British won, repatriation considerations: should we take the island of Guadeloupe or Canada?
 - 1700: Caribbean richest (regardless of country of origin of colonization), Mexico on par with the US
- Being rich does not always produce good institutions (recall the correlation graph at the beginning).
 - ► What (might have) happened?

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 0000000000000

Sokoloff and Engerman (2000): Reversal of fortunes

Table 1

The Record of Gross Domestic Product per Capita in Selected New World Economies, 1700–1997

	GDP per capita relative to the U.S.				
	1700	1800	1900	1997	
Argentina	_	102	52	35	
Barbados	150	_	_	51	
Brazil	_	50	10	22	
Chile	_	46	38	42	
Cuba	167	112	_	_	
Mexico	89	50	35	28	
Peru	_	41	20	15	
Canada	-	-	67	76	
United States (GDP p.c. in 1985\$)	550	807	3,859	20,230	

Note and Sources: The relative GDP per capita figures for Latin American countries come primarily from Coatsworth (1998). Coatsworth relied extensively on Maddison (1994), and we draw our estimates for Canada and the United States in 1800 and 1900 from the same source (using linear interpolation to obtain the 1900 figures from 1890 and 1913 estimates). The GDP per capita estimates for Barbados in 1700 are from Elits (1995). The 1997 figures are based on the estimates of GDP with purchasing power parity adjustments in World Bank (1999). Since there was no adjustment factor reported for Barbados in that year, we used that for Jamaica in our calculations. The 1700 figure for the United States was obtained from Gallman (2000), by projecting backward the same rate of growth that Gallman estimated between 1774 and 1800. Maddison (1991) has published alternative sets of estimates, which yield somewhat different growth paths (especially for Argentina) during the late inneteenth and early twentieth century than does Coatsworth, but the qualitative implications of the different estimates and he has a more positive assessment of Brazilian economic performance during the early nineteenth century than does Coatsworth, but the qualitative implications of the different estimates are bare for our propose.

Source: Sokoloff and Engerman (2000)

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 0000000000000

Sokoloff and Engerman (2000): Factor endowments

- Factor endowments at critical points of history (colonization) lead to differences in distribution of political power
- Three types of countries:
 - 1. Large-scale staple crop producers (e.g., Barbados, Cuba, Jamaica, Brazil)
 - 2. Mineral extractors (e.g., Mexico, Peru)
 - 3. Basic agricultural production (US, Canada)
- ► (1) and (2) needed lots of manual labor: either through import of slave labor (1) or through enslaving domestic population where there was plenty (2).
 - Legally codified inequality intrinsic to slavery created inequalities in political rights and institutional setting shaping the development centuries later.
 - Reason: value of keeping power too large to give up in unequal societies + more likely to crush dissent (Compare to situations of more equal countries.)

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence 0000000000000

Sokoloff and Engerman (2000): : Franchise 1840-80

Laws Governing the Franchise and the Extent of Voting in Selected American Countries, 1840–1940

		Lack of			Proportion of
		Secrecy In	Wealth	Literacy	the Population
		Balloting	Requirement	Requirement	Voting
			1840-80		
Chile	1869	Y	Y	Y	1.6%
Costa Rica	1890	Y	Y	Y	_
Ecuador	1856	Y	Y	Y	0.1
Mexico	1840	Y	Y	Y	_
Peru	1875	Y	Y	Y	_
Uruguay	1880	Y	Y	Y	_
Venezuela	1880	Y	Y	Y	_
Canada	1867	Y	Y	Ν	7.7
	1878	Ν	Y	Ν	12.9
United States	1850^{a}	Ν	Ν	Ν	12.9
	1880	Ν	N	Ν	18.3

Source: Sokoloff and Engerman (2000)

Wealth differences

Factor endowments 00000●0

Slave trade

Culture 0000000000

Sokoloff and Engerman (2000): Franchise 1921-40

		Lack of Secrecy In Balloting	Wealth Requirement	Literacy Requirement	Proportion of the Population Voting
			1921–4	9	
Argentina	1937	Ν	Ν	Ν	15.0
Bolivia	1951	_	Y	Y	4.1
Brazil	1930	Y	Y	Y	5.7
Colombia	1930	Ν	Ν	Ν	11.1
Chile	1931	Y	Ν	Y	6.5
Costa Rica	1940	Ν	Ν	Ν	17.6
Ecuador	1940	Ν	Ν	Y	3.3
Mexico	1940	Ν	Ν	Ν	11.8
Peru	1940	Ν	Ν	Y	_
Uruguay	1940	Ν	Ν	Ν	19.7
Venezuela	1940	Ν	Y	Y	_
Canada	1940	Ν	Ν	Ν	41.1
United States	1940	Ν	Ν	Y	37.8

Source: Sokoloff and Engerman (2000)

Wealth differences

Factor endowments 000000● Slave trade

Culture 0000000000

Sokoloff and Engerman (2000): Summary

- ► Lower inequalities \rightarrow institutions of public schools promoting literacy (schools) \rightarrow human capital $\uparrow \rightarrow$ growth
 - ► US most literate population in the world by 1800
 - Between 1825 and 1850, nearly every state in the American west or north had free schools open to all children, paid from taxes.
 - ► Latin American countries more than 75 years behind the US
- Differences in inequality in wealth, human capital, and political power initially rooted in the factor endowments persisted over time. Preserved by institutions, affecting growth.

Wealth differences

Factor endowments 0000000

 Culture 0000000000 Persistence 0000000000000

Role of institutions in economic development

Wealth differences reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Slave trade, state capacity, culture, and wealth of nations

Culture, trust, and persistence of institutions

Understanding persistence of institutions

Wealth differences

Factor endowments

 Culture 0000000000 Persistence 00000000000000

Role of history in shaping institutions

- ▶ Now on slave trade from the other side of the ocean.
 - Further evidence on historical "experiments" predisposing countries to have worse institutions.
- One explanation for Africa's underdevelopment is its history of extraction, characterised by two events: the slave trades and colonialism.
 - ► On colonialism in Acemoglu, Johnson, and Robinson (2001).

Nunn (2008): The long-term effects of Africa's slave trades

- Q: Does the intensity of slave trade predict wealth of African countries centuries later?
- Manning (1990, p. 124): "Slavery was corruption: it involved theft, bribery, and exercise of brute force as well as ruses. Slavery thus may be seen as one source of precolonial origins for modern corruption."
- Data: number of slaves exported from each country in Africa in each century between 1400 and 1900 by combining data from ship records on the number of slaves shipped from each African port or region with data from a variety of historical documents that report the ethnic identities of slaves that were shipped from Africa.

Wealth differences

Factor endowments

Slave trade 000000000000000

Culture 0000000000 Persistence 0000000000000

Nunn (2008): The long-term effects of Africa's slave trades

Isocode	Country name	Trans- Atlantic	Indian Ocean	Trans- Saharan	Red Sea	All slave trades
AGO	Angola	3,607,020	0	0	0	3,607,020
NGA	Nigeria	1,406,728	0	555,796	59,337	2,021,859
GHA	Ghana	1,614,793	0	0	0	1,614,793
ETH	Ethiopia	0	200	813,899	633,357	1,447,455
SDN	Sudan	615	174	408,261	454,913	863,962
MLI	Mali	331,748	0	509,950	0	841,697
ZAR	Democratic	759,468	7,047	0	0	766,515
	Republic of Congo					
MOZ	Mozambique	382,378	243,484	0	0	625,862
TZA	Tanzania	10,834	523,992	0	0	534,826
TCD	Chad	823	0	409,368	118,673	528,862
BEN	Benin	456,583	0	0	0	456,583
SEN	Senegal	278,195	0	98,731	0	376,926
GIN	Guinea	350,149	0	0	0	350,149
TGO	Togo	289,634	0	0	0	289,634
GNB	Guinea-Bissau	180,752	0	0	0	180,752
BFA	Burkina Faso	167,201	0	0	0	167,201
MRT	Mauritania	417	0	164,017	0	164,434

 TABLE II

 ESTIMATED TOTAL SLAVE EXPORTS BETWEEN 1400 AND 1900 BY COUNTRY

Source: Nunn (2008)
Wealth differences

Factor endowments

Slave trade

Culture 0000000000

Persistence 0000000000000

Nunn (2008): The long-term effects of Africa's slave trades

FIGURE III Relationship between Log Slave Exports Normalized by Land Area, ln(exports/area), and Log Real Per Capita GDP in 2000, ln y

Source: Nunn (2008)

Slave trade

Culture 0000000000

Nunn (2008): The long-term effects of Africa's slave trades

	Allonollin	DETWEEN C	DLAVE EAPU	NIS AND IT	COME	
	Depende	nt variable	e is log rea	l per capit	a GDP in 2	2000, ln y
	(1)	(2)	(3)	(4)	(5)	(6)
ln(exports/area)	-0.112***				-0.103***	
	(0.024)	(0.029)	(0.037)	(0.035)	(0.034)	(0.034)
Distance from		0.016	-0.005	0.019	0.023	0.006
equator		(0.017)	(0.020)	(0.018)	(0.017)	(0.017)
Longitude		0.001	-0.007	-0.004	-0.004	-0.009
		(0.005)	(0.006)	(0.006)	(0.005)	(0.006)
Lowest monthly		-0.001	0.008	0.0001	-0.001	-0.002
rainfall		(0.007)	(0.008)	(0.007)	(0.006)	(0.008)
Avg max humidity		0.009	0.008	0.009	0.015	0.013
		(0.012)	(0.012)	(0.012)	(0.011)	(0.010)
Avg min		-0.019	-0.039	-0.005	-0.015	-0.037
temperature		(0.028)	(0.028)	(0.027)	(0.026)	(0.025)
ln(coastline/area)		0.085**	0.092**	0.095**	0.082**	0.083**
		(0.039)	(0.042)	(0.042)	(0.040)	(0.037)
Island indicator				-0.398	-0.150	
				(0.529)	(0.516)	
Percent Islamic				-0.008***	-0.006*	-0.003
				(0.003)	(0.003)	(0.003)
French legal origin				0.755	0.643	-0.141
0 0				(0.503)	(0.470)	(0.734)
North Africa				0.382	-0.304	
indicator				(0.484)	(0.517)	
ln(gold prod/pop)					0.011	0.014
					(0.017)	(0.015)
ln(oil prod/pop)					0.078***	0.088***
m(on prompop)					(0.027)	(0.025)
ln(diamond					-0.039	-0.048
prod/pop)					(0.043)	(0.041)
Colonizer fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Number obs.	52	52	42	52	52	42
R^2	.51	.60	.63	.71	.77	.80

TABLE III Relationship between Slave Exports and Income

Wealth differences

Factor endowments

 Culture 0000000000 Persistence 0000000000000

Nunn (2008): The long-term effects of Africa's slave trades

- So far: OLS estimates shows a relationship between slave exports and current economic performance.
- But: What if societies that were initially underdeveloped selected into the slave trades, and these societies continue to be underdeveloped today? What to do?

Wealth differences

Factor endowments

Slave trade 000000000000000 Culture 0000000000

Persistence 0000000000000

Nunn (2008): The long-term effects of Africa's slave trades

► Historical evidence on selection during slave trade

- "Only societies with institutions that were sufficiently developed were able to facilitate trade with the Europeans." (Nunn, 2008, p. 157)
- More prosperous areas also the most densely populated.
 Population density as a proxy for wealth (Acemoglu, Johnson, and Robinson, 2002)
- \blacktriangleright Most prosperous countries in 1400 most impacted by slave trades \rightarrow

Wealth differences

Factor endowments

 Culture F

Persistence 000000000000000

Nunn (2008): The long-term effects of Africa's slave trades

FIGURE IV Relationship between Initial Population Density and Slave Exports

Source: Nunn (2008)

Nunn (2008): The long-term effects of Africa's slave trades

- Instruments for slave trade: "location of demand that influenced the location of supply and not vice versa" (Nunn, 2008, p. 160)
 - Sailing distance from main importing places across Atlantic ocean (Virginia, USA; Havana, Cuba; Haiti; Kingston, Jamaica; Dominica; Martinique; Guyana; Salvador, Brazil; and Rio de Janeiro, Brazil)
 - 2. The sailing distance from the point on the coast to the closest of the two major slave destinations of the Indian Ocean slave trade (Mauritius and Muscat, Oman)
 - 3. Overland distance from a closest port of export for the trans-Saharan slave trade (Algiers, Tunis, Tripoli, Benghazi, and Cairo).
 - 4. Overland distance from the closest port of export for the Red Sea slave trade (Massawa, Suakin, and Djibouti).
- Minimum distance used (average and median give similar results).

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000

Persistence 0000000000000

Nunn (2008): The long-term effects of Africa's slave trades

Panel A. Transatlantic slave trade

Source: Nunn and Watchkenson (2011)

Panel B. Indian Ocean slave trade

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence 0000000000000

Nunn (2008): The long-term effects of Africa's slave trades

FIGURE V Example Showing the Distance Instruments for Burkina Faso

Source: Nunn (2008)

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence 000000000000000

Nunn (2008): The long-term effects of Africa's slave trades

First Stage. Dependent variable is slave exports, ln(exports/area)

2* -1.69**
61) (0.680)
-1.57^{*}
(0.801) (0.801)
4 -4.08**
) (1.55)
2 2.13
2) (2.40)
2 4.01
es Yes
es Yes
o Yes
.04
5 .51
2 5

Source: Nunn (2008)

Wealth differences

Factor endowments 0000000

Slave trade 00000000000000000

Culture 0000000000 Persistence 00000000000000

Nunn (2008): The long-term effects of Africa's slave trades

	(4)	(2)	(0)	(1)
	(1)	(2)	(3)	(4)
Second Sta	ige. Dependent v	ariable is log in	come in 200	0, ln y
ln(exports/area)	-0.208^{***}	-0.201^{***}	-0.286^{*}	-0.248^{***}
	(0.053)	(0.047)	(0.153)	(0.071)
	[-0.51, -0.14]	[-0.42, -0.13]	$[-\infty, +\infty]$	[-0.62, -0.12]
Colonizer fixed effects	No	Yes	Yes	Yes
Geography controls	No	No	Yes	Yes
Restricted sample	No	No	No	Yes
F-stat	15.4	4.32	1.73	2.17
Number of obs.	52	52	52	42
	Source	Nupp (2008)		

 TABLE IV

 Estimates of the Relationship between Slave Exports and Income

Source: Nunn (2008)

Check: distance from slave ports used to determine wealth outside Africa: no effect. Q: Why such check needed?

Nunn (2008): Channels and take-aways

- Channels through which slave trade affects current day wealth:
 - 1. Weakening ties between villages \rightarrow discouraging the formation of larger communities and broader ethnic identities \rightarrow ethnic fractionalization \rightarrow lower public goods provision (Alesina et al. 1999) \rightarrow lower economic development
 - 2. Weakening and underdevelopment of states: slave trades \rightarrow long-term political instability \rightarrow weak states \rightarrow inability to collect taxes \rightarrow inability to provide public goods
- Some support for both channels
- Adverse effects of historical events on present day economic performance.

Wealth differences

Factor endowments 0000000

Slave trade

Culture •000000000 Persistence

Role of institutions in economic development

Wealth differences reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Slave trade, state capacity, culture, and wealth of nations

Culture, trust, and persistence of institutions

Understanding persistence of institutions

Institutions Wealth differences Factor endowments

Slave trade

Culture ○●○○○○○○○○

Persistence 0000000000000

Nunn and Wantchekon (2011): The Slave Trade and the Origins of Mistrust in Africa

- But what is it about slave trade that caused worse institutions now?
 - Recall Manning (1990, p. 124): "Slavery was corruption: it involved <u>theft</u>, bribery, and exercise of brute force as well as <u>ruses</u>."
 - Add Nunn and Wantchekon (2011): "Initially, slaves were captured primarily through state organized raids and warfare, but as the trade progressed, the environment of ubiquitous insecurity caused individuals to turn on others — including friends and family members — and to kidnap, trick, and sell each other into slavery (Koelle 1854; Hair 1965; Piot 1996)."
- Does the mistrust prevail in societies exposed to most slave trade up until these days?

Wealth differences

Factor endowments

Slave trade

Culture 000000000 Persistence

Nunn and Wantchekon (2011)

► Why the persistence?

- Cultural anthropology: rules of thumbs (social norms) used for decision-making in environments where information acquisition costly or imperfect (Boyd and Richerson, 1985).
- Social norms of mistrust towards others likely more beneficial than norms of trust in a society where you can get kidnapped by your cousin.
- ► Measuring trust: 2005 Afrobarometer survey
 - How much your trust your relatives / neighbors / locally elected government council / those in the same country from other ethnic groups / those from the same ethnic group?
 - ► Not at all / just a little / somewhat / a lot.

Wealth differences

Factor endowments

Slave trade

Culture 000●000000 Persistence 000000000000

Nunn and Wantchekon (2011)

Estimation strategy:

 $\textit{trust}_{i,e,d,c} = \alpha_{c} + \beta \textit{slaveexports}_{e} + X'_{i,e,d,c} \Gamma + X'_{d,c} \Omega + X'_{e} \Theta + \varepsilon_{i,e,d,c}$

- trust_{i,e,d,c}... natural log of one plus slave exports normalized by land area (measure normalized by the size of ethnic groups)
- ▶ *e*... ethnic group
- ► *d*... district
- ▶ *c*... country
- $X'_{i,e,d,c}$... age, gender, urban/rural, religion, occupation
- X[']_{d,c}... district ethnic fractionalization, share of the district's population that is of the same ethnicity as the respondent
- ➤ X'_e... ethnicity-level variables capturing historical characteristics of ethnicities, and differing impacts of colonial rule on ethnic groups (prevalence of malaria, 1400 urbanization indicator variable, sophistication of precolonial settlements, precolonial sophistication of political institutions...)

Wealth differences

Factor endowments 0000000 Slave trade

Culture 0000000000 Persistence

Nunn and Wantchekon (2011)

	Trust	Trust	Trust of	Intra-	Inter-
	of	of	local	group	group
	relatives	neighbors	council	trust	trust
	(1)	(2)	(3)	(4)	(5)
ln (1+exports/area)	-0.133***	-0.159***	-0.111^{***}	* -0.144***	-0.097^{***}
	(0.037)	(0.034)	(0.021)	(0.032)	(0.028)
Individual controls	Yes	Yes	Yes	Yes	Yes
District controls	Yes	Yes	Yes	Yes	Yes
Country fixed effects	Yes	Yes	Yes	Yes	Yes
Number of observations	20,062	20,027	19,733	19,952	19,765
Number of ethnicity clusters	185	185	185	185	185
Number of district clusters	1,257	1,257	1,283	1,257	1,255
R^2	0.13	0.16	0.20	0.14	0.11

TABLE 2-OLS ESTIMATES OF THE DETERMINANTS OF THE TRUST OF OTHERS

Notes: The table reports OLS estimates. The unit of observation is an individual. Standard errors are adjusted for two-way clustering at the ethnicity and district levels. The individual controls are for age, age squared, a gender indicator variable, five living conditions fixed effects, ten education fixed effects, 18 religion fixed effects, 25 occupation fixed effects, and an indicator for whether the respondent lives in an urban location. The district controls include ethnic fractionalization in the district and the share of the district's population that is the same ethnicity as the respondent.

Source: Nunn and Wantchekon (2011)

Wealth differences

Factor endowments

Slave trade

Culture 00000●0000 Persistence

Nunn and Wantchekon (2011)

- But: what if ethnic groups that were inherently less trusting were more likely to be taken during the slave trades? How to control for this possible reverse causality?
- Already have some controls for ethnic group fixed effects (see previous slide), but still possibly some *omitted variables*?
- Instrumental variables: Historical distance of the ethnic group from the coast.

Wealth differences

Factor endowments

Slave trade

Culture 00000000000 Persistence

Nunn and Wantchekon (2011)

	Trust of relatives (1)	Trust of neighbors (2)	Trust of local council (3)	Intragroup trust (4)	Intergroup trust (5)
Second stage: Dependent variable	is an individual's	trust			
ln (1+exports/area)	-0.190***	-0.245^{***}	-0.221^{***}	-0.251^{***}	-0.174^{**}
	(0.067)	(0.070)	(0.060)	(0.088)	(0.080)
Hausman test (p -value)	0.88	0.53	0.09	0.44	0.41
R^2	0.13	0.16	0.20	0.15	0.12
First stage: Dependent variable is l	n (1+exports/a	rea)			
Historical distance of ethnic	-0.0014^{***}	-0.0014***	-0.0014***	-0.0014***	-0.0014***
group from coast	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Colonial population density	Yes	Yes	Yes	Yes	Yes
Ethnicity-level colonial controls	Yes	Yes	Yes	Yes	Yes
Individual controls	Yes	Yes	Yes	Yes	Yes
District controls	Yes	Yes	Yes	Yes	Yes
Country fixed effects	Yes	Yes	Yes	Yes	Yes
Number of observations	16,709	16,679	15,905	16,636	16,473
Number of clusters	147 / 1,187	147 / 1,187	146 / 1,194	147 / 1,186	147 / 1,184
F-stat of excl. instrument	26.9	26.8	27.4	27.1	27.0
R^2	0.81	0.81	0.81	0.81	0.81

TABLE 5-IV ESTIMATES OF THE EFFECT OF THE SLAVE TRADE ON TRUST

Notes: The table reports IV estimates. The top panel reports the second-stage estimates, and the bottom panel reports first-stage estimates. Standard errors are adjusted for two-way clustering at the ethnicity and district levels. The individual controls, district controls, ethnicity-level colonial controls, and colonial population density measures are described in <u>Table 3</u>. The null hypothesis of the Hausman test is that the OLS estimates are consistent.

Source: Nunn and Wantchekon (2011)

Wealth differences

Factor endowments

Slave trade

Culture 0000000●00 Persistence

Nunn and Wantchekon (2011)

TABLE 8—REDUCED FORM RELATIONSHIP BETWEEN THE DISTANCE FROM THE COAST AND TRUST WITHIN AND OUTSIDE OF AFRICA

		Intergroup trust					
	Afrobarome	ter sample	WVS non-A	WVS Nigeria			
	(1)	(2)	(3)	(4)	(5)		
Distance from the coast	0.00039*** (0.00013)	0.00037*** (0.00012)	-0.00020 (0.00014)	-0.00019 (0.00012)	0.00054*** (0.00010)		
Country fixed effects Individual controls	Yes No	Yes Yes	Yes No	Yes Yes	n/a Yes		
Number of observations Number of clusters R^2	19,970 185 0.09	19,970 185 0.10	10,308 107 0.09	10,308 107 0.11	974 16 0.06		

Notes: The table reports OLS estimates. The unit of observation is an individual. The dependent variable in the WVS sample is the respondent's answer to the question: "How much do you trust <nationality> people in general?" The categories for the respondent's answers are: "not at all," "not very much," "neither trust nor distrust," "a little," and "completely." The responses take on the values 0, 1, 1.5, 2, and 3. Standard errors are clustered at the ethnicity level in the Afrobarometer regressions and at the location (city) level in the Asiabarometer and the WVS samples. The individual controls are for age, age squared, a gender indicator, an indicator for living in an urban location, and occupation fixed effects.

*** Significant at the 1 percent level.

**Significant at the 5 percent level.

*Significant at the 10 percent level.

Source: Nunn and Wantchekon (2011)

Wealth differences

Factor endowments

Slave trade

Culture 00000000●0 Persistence

Nunn and Wantchekon (2011)

How does the mistrust persist?

- 1. General beliefs or "rules-of-thumb" based on mistrust transmitted from parents to children over time (**social norms**).
- 2. Slave trade resulted in a deterioration of legal and political institutions. Because these institutions persist, individuals are not constrained to act in a trustworthy manner, leading to lower trust (legal enforcement).
- Both channels seem to be at play.

Wealth differences

Factor endowments

Slave trade

Culture 00000000● Persistence

Side-note: Measuring trust(worthiness) in a laboratory

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence •00000000000

Role of institutions in economic development

Wealth differences reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Slave trade, state capacity, culture, and wealth of nations

Culture, trust, and persistence of institutions

Understanding persistence of institutions

Dell (2010): The Persistent Effects of Peru's Mining Mita

- Further understanding mechanisms behind the role of historical institutions in persistence of present day underdevelopment
- ► This paper: land tenure and public goods as channels
- Setting:
 - Mining mita in Peru and Bolivia instituted by Spanish government (1573-1812): one-seventh of adult male population of over 200 communities forced to work in silver and mercury mines.

► Identification strategy: regression discontinuity design (RDD)

 Validity: all relevant factors besides treatment show no discontinuity; only focuses on a subset of the border region that satisfies this (part of the Andean range in southern Peru)

Wealth differences

Factor endowments

Slave trade

Culture 0000000000 Persistence

Dell (2010): Mita area

FIGURE 1.—The *mita* boundary is in black and the study boundary in light gray. Districts falling inside the contiguous area formed by the *mita* boundary contributed to the *mita*. Elevation is shown in the background.

Source: Dell (2010)

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence

Dell (2010)

 $c_{idb} = \alpha + \gamma \textit{mita}_d + X'_{id}\beta + f(\text{geographic locationd id}) + \Phi_b + \varepsilon_{idb}$

Identification assumptions:

- ► E[c₁|lat, lon] and E[c₀|lat, lon] continuous at the discontinuity threshold (c... outcomes (geographical data, ethnicity, pre-mita data on settlements and taxation).
- Treatment effect identified using variation at discontinuity: relies on samples 25km, 50km, 75km, and 100km from *mita* boundary
- No migration across boundaries: not satisfied during mita period, now reasonable (land tenure)
- ▶ i... individual, b... segment of the mita boundary, d... district
- f(geographic locationd id)... RD polynomial controlling for smooth functions of geographic location
- \blacktriangleright Φ_{h} ... boundary segment fixed effects

Factor endowments 0000000

Slave trade

Culture 0000000000

Persistence

Dell (2010)

- "Black box" results:
 - Using present day household survey data: equivalent household consumption lower by 25% and childhood stunting higher by 6 p.p. in *mita* subjected districts
- Examining channels:
 - Using data from the Spanish Empire and Peruvian Republic
 - Focus on land tenure (formation of *haciendas*), public goods, and market participation. Data:
 - ► Haciendas in 1689, 1845, and 1940 (parish reports)
 - Education: Population Census (1876 and 1940), ENAHO (2001)
 - Roads: GIS road map of Peru produced by the Ministro de Transporte (2006)
 - Agriculture: Population Census (1993), Agricultural Census (1994)
 - Results: mita limited the establishment of large landowners + land tenure affected public goods provision and smallholder participation in agricultural markets

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence

Dell (2010): Modern results

				Dependent Variable			
	Log Eq	Log Equiv. Hausehold Consumption (2001)			Stunted Growth, Children 6-9 (2005)		
Sample Within:	<100 km	<75 km	<50 km	<100 km	<75 km	<50 km	Border
	of Bound.	of Bound.	of Bound.	of Bound.	of Bound.	of Bound.	District
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
		Panel A	. Cubic Polynomial in	Latitude and Longitu	de		
Mita	-0.284	-0.216	-0.331	0.070	0.084*	0.087*	0.114**
	(0.198)	(0.207)	(0.219)	(0.043)	(0.046)	(0.048)	(0.049)
R^2	0.060	0.060	0.069	0.051	0.020	0.017	0.050
		Pane	B. Cubic Polynomial	in Distance to Potosí			
Mita	-0.337^{***}	-0.307^{***}	-0.329^{***}	0.080***	0.078***	0.078***	0.063*
	(0.087)	(0.101)	(0.096)	(0.021)	(0.022)	(0.024)	(0.032)
R^2	0.046	0.036	0.047	0.049	0.017	0.013	0.047
		Panel C.	Cubic Polynomial in E				
Mita	-0.277***	-0.230**	-0.224**	0.073***	0.061***	0.064***	0.055*
	(0.078)	(0.089)	(0.092)	(0.023)	(0.022)	(0.023)	(0.030)
R^2	0.044	0.042	0.040	0.040	0.015	0.013	0.043
Geo. controls	yes	yes	yes	yes	yes	yes	yes
Boundary F.E.s	yes	yes	yes	yes	yes	yes	yes
Clusters	71	60	52	289	239	185	63
Observations	1478	1161	1013	158,848	115,761	100,446	37,421

LIVING STANDARDS^a

⁸The unit of observation is the lowschold in columns 1-3 and the individual in columns 4-7. Robust standard errors, adjusted for clustering by district, are in parentheses. The dependent variable is togeneric provident based based community (EVARDIO (2001)) in columns 1-3, and a duming equal to 1 if the howschold's district, are in parentheses. The dependent variable is togeneric provident based based community (EVARDIO (2001)) in columns 1-3, and a duming equal to 0 if the howschold's district contributed to the *nitu* and equal to 0 otherwise (Saignes (1984), Amat y Junici (1987), p249, 2640). Band A includes a cubic polynomial in the latitude and guita to 0 otherwise (Saignes (1984), Amat y Junici (1987), p249, 2640). Band A includes a cubic polynomial in the latitude and distance to the *nitu* stopentic provident based based

Source: Dell (2010)

Wealth differences

Factor endowments 0000000

Slave trade

Culture 000000000

Persistence

Dell (2010): Manipulation check

TABLE V

1572 TRIBUTE AND POPULATION^a

				Depender	nt Variable			
		s	share of Trib	ute Revenu	es			
	Log Mean	Spanish	Spanish	Spanish	Indig.		Percent	
	Tribute	Nobility	Priests	Justices	Mayors	Men	Boys	Females
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Panel	A. Cubic	Polynomia	l in Latitu	ide and L	ongitude		
Mita	0.020	-0.010	0.004	0.004	0.003	-0.006	0.011	-0.009
	(0.031)	(0.030)	(0.019)	(0.010)	(0.005)	(0.009)	(0.012)	(0.016)
R^2	0.762	0.109	0.090	0.228	0.266	0.596	0.377	0.599
	Pa	nel B. Cub	ic Polynor	nial in Di	stance to I	Potosí		
Mita	0.019	-0.013	0.008	0.006	-0.001	-0.012	0.005	-0.011
	(0.029)	(0.025)	(0.015)	(0.009)	(0.004)	(0.008)	(0.010)	(0.012)
R^2	0.597	0.058	0.073	0.151	0.132	0.315	0.139	0.401
	Panel C	C. Cubic Po	olynomial	in Distand	e to Mita	Boundary		
Mita	0.040	-0.009	0.005	0.003	-0.001	-0.011	0.001	-0.008
	(0.030)	(0.018)	(0.012)	(0.006)	(0.004)	(0.007)	(0.008)	(0.010)
R^2	0.406	0.062	0.096	0.118	0.162	0.267	0.190	0.361
Geo. controls	yes	yes	yes	yes	yes	yes	yes	yes
Boundary F.E.s	yes	yes	yes	yes	yes	yes	yes	yes
Mean dep. var.	1.591	0.625	0.203	0.127	0.044	0.193	0.204	0.544
Observations	65	65	65	65	65	65	65	65

*The dependent variable in column 1 is the log of the district's mean 1572 tribute rate (Miranda (1583)). In columns 2-8, it is the share of tribute revenue allocated to Spanish nobility (mcomularos), Spanish priests, Spanish (1583), the composed or mlass (aged 18-50), how, and fernales (or all ages), respectively. Panel A includes a such population log and the value of 1572 district population log main and line and tribute district capital and to Potos, and panel C includes as cable pophromial in Euclidean distance from the mark spanish method. Spanish models, and the marks point on the mail boundary segment freed effects. The samples include district subsequentiations 6-8 wight by the square root of the district's total population. The observations with the observations at from mire districts. Coefficients that are significantly different from zero are denoted by the following system: "10%, "5%, and "1%."

Sources Dell (2010)

Wealth differences

Factor endowments 0000000

Slave trade

Culture 0000000000 Persistence

Dell (2010): Channels: land ownership

LAND TENURE AND LABOR SYSTEMS*

			Dependent Variable		
			Percent of		
		Haciendas per 1000 District	Rural Tributary	Percent of Rural	
	Haciendas per	Residents	Population in Haciendas	Population in Haciendas	Land Gini
	District in 1689	in 1689	in ca. 1845	in 1940	in 1994
	(1)	(2)	(3)	(4)	(5)
	Panel A. Cu	bic Polynomial i	n Latitude and L	ongitude	
Mita	-12.683***	-6.453**	-0.127*	-0.066	0.078
	(3.221)	(2.490)	(0.067)	(0.086)	(0.053)
R^2	0.538	0.582	0.410	0.421	0.245
			al in Distance to	Potosí	
Mita	-10.316***	-7.570***	-0.204**	-0.143 ***	0.107^{**}
	(2.057)	(1.478)	(0.082)	(0.051)	(0.036)
R^2	0.494	0.514	0.308	0.346	0.194
	Panel C. Cubi		Distance to Mita	Boundary	
Mita	-11.336***	-8.516***	-0.212^{***}	-0.120***	0.124**
	(2.074)	(1.665)	(0.060)	(0.045)	(0.033)
R^2	0.494	0.497	0.316	0.336	0.226
Geo. controls	yes	yes	yes	yes	yes
Boundary F.E.s	yes	yes	yes	yes	yes
Mean dep. var.	6.500	5.336	0.135	0.263	0.783
Observations	74	74	81	119	181

^aThe unit of observation is the district. Robust standard errors are in parentheses. The dependent variable in column 1 is *haciendus* per followist in table of district residents in 1689 (Villamose, Urteaga (1983)). In column 3 it is the percentage of the district's tradent population residing in *haciendus* are 1000 (Directic district) in the priority of the district's tradent population residing in *haciendus* are 1000 (Directic district) and the latitude are able polynomial in *Eaclidaen* and states of the nearest point on the *mini* branchary. All regressions include gas applied to the market point on the *mini* branchary. All regressions include gas are branchary and the statest are able polynomial in *Eaclidaen* district strategies include district winds explorable are less than 50 km from the *mini* branchary are gament fixed differst. The samples include district whose capital are less than 50 km from the *mini* branchary in 2000 (Directic district) with the *mini* branchary are 1000 (Directic district) with a population. Sift of the observations' district with a control and branchary in 2000 (Directic district) with a population. Sift of the observations after threat the district with any more and the first with a population. Sift of the observations after threat district with any and 66% in column 3. Cxcefficients that are significantly different from aero are denoted by the following weakst: "1000, "55% of the observations" after the assignment and the site observations and the site observations and the site observations are in the site observations are in the site observations and the site observations are in the site observations are intervation and the site observations are intervation and the site observations are intervation and t

Culture 0000000000

Dell (2010): Channels: Public goods: Education

EDUCATION^a

	Dependent Variable				
		Mean Years	Mean Years		
	Literacy	of Schooling	of Schooling		
	1876	1940	2001		
	(1)	(2)	(3)		
	Panel A. Cubic Polynomial i	n Latitude and Longitude			
Mita	-0.015	-0.265	-1.479^{*}		
	(0.012)	(0.177)	(0.872)		
R^2	0.401	0.280	0.020		
	Panel B. Cubic Polynomia	al in Distance to Potosí			
Mita	-0.020***	-0.181**	-0.341		
	(0.007)	(0.078)	(0.451)		
R^2	0.345	0.187	0.007		
	Panel C. Cubic Polynomial in	Distance to Mita Boundary			
Mita	-0.022^{***}	-0.209^{***}	-0.111		
	(0.006)	(0.076)	(0.429)		
R^2	0.301	0.234	0.004		
Geo. controls	yes	yes	yes		
Boundary F.E.s	yes	yes	yes		
Mean dep. var.	0.036	0.470	4.457		
Clusters	95	118	52		
Observations	95	118	4038		

^aThe unit of observation is the district in columns 1 and 2 and the individual in column 3, Robust standard errors, adjusted for clustering by district, are in parentheses. The dependent variable is mean literacy in 1876 in column 1 (Dirección de Estadística del Perú (1578)), mean years of schooling in 2001 in column 2 (Dirección de Estadística del Perú (1578)), mean years of schooling in 2001 in column 2 (Dirección de Listadística del Perú (1578)), mean years of schooling in 2001 in column 2 (Dirección de Estadística del Perú (1584), and longitude of the observation's district capital, panel B includes a cubic polynomial in the latitude and longitude of the observation's district capital, panel B includes a cubic polynomial ary segment fixed effects. The samples include districts whose capital are less than 50 km from the *mutu* boundary, columns 1 and 2 end vestion effects. The samples include districts whose capital are less than 50 km from the *mutu* boundary, districts in column 1, 65% in column 3, and 67% in column 3. Cofficients that are significantly different from zero are denoted by the following system: "10%, "15%, and "11%," 15%.

Slave trade

Culture 0000000000

Dell (2010): Channels: Public goods: Roads

ROADS⁸

		Dependent Variable	
			Density of
	Density of	Density of	Paved/Grave
	Local Road	Regional Road	Regional
	Networks	Networks	Roads
	(1)	(2)	(3)
	Panel A. Cubic Polynomial	in Latitude and Longitude	
Mita	0.464	-29.276*	-22.426^{*}
	(18.575)	(16.038)	(12.178)
R^2	0.232	0.293	0.271
	Panel B. Cubic Polynom	ial in Distance to Potosí	
Mita	-1.522	-32.644***	-30.698***
	(12.101)	(8.988)	(8.155)
R^2	0.217	0.271	0.256
	Panel C. Cubic Polynomial ir	Distance to Mita Boundary	
Mita	0.535	-35.831***	-32.458***
	(12.227)	(9.386)	(8.638)
R^2	0.213	0.226	0.208
Geo. controls	yes	ves	yes
Boundary F.E.s	yes	ves	ves
Mean dep. var.	85.34	33.55	22.51
Observations	185	185	185

"The unit of observation is the district. Robust standard errors are in parentheses. The road densities are defined as total length in meters of the respective road type in each district divided by the district syntap and the each in kilometers squared. They are calculated using a GIS map of Pervi's road networks (Ministro de Transporte (2006)). Panel A includes a cubic polynomial in the kilotika and longitods of the observation's dividing target particle area, in kilomepolynomial in Euclidean distance to the nearest point on the *nita* boundary. All regressions include georgraphic controls and boundary, 66% of the observations are in *mita* districts. Coefficients that are significantly different from zero are denoted by the following system: '10% + '5%, and '+1%.

Source: Dell (2010)

Slave trade

Culture 0000000000 Persistence

Dell (2010): Proximate determinants of consumption

	Dependent Variable				
	Percent of District Labor Force in Agriculture—1993 (1)	Agricultural Household Sells Part of Produce in Markets—1994 (2)	Household Member Employed Outside the Agricultural Unit—1994 (3)		
	Panel A. Cubic Polynomia	l in Latitude and Longitud	2		
Mita	0.211 (0.140)	-0.074** (0.036)	-0.013 (0.032)		
R^2	0.177	0.176	0.010		
	Panel B. Cubic Polynon	nial in Distance to Potosí			
Mita	0.101 (0.061)	-0.208*** (0.030)	-0.033 (0.020)		
R^2	0.112	0.144	0.008		
	Panel C. Cubic Polynomial i	in Distance to Mita Bounda	iry		
Mita	0.092* (0.054)	-0.225*** (0.032)	-0.038** (0.018)		
R^2	0.213	0.136	0.006		
Geo. controls Boundary F.E.s	yes	yes	yes ves		
Mean dep. var.	0.697	0.173	0.245		
Clusters Observations	179 179	178 160,990	182 183,596		

CONSUMPTION CHANNELS⁸

¹⁶Robust standard errors, adjusted for clustering by district in columns 2 and 3, are in parentheses. The dependent variable in column 1 is the presentage of the district's labor energanged in agriculture as a primary occupion (INEI (1993)), in column 2 it is an indicator equal to 1 if a last one member of the booshedd pursues scendule, and and in column 3 it is an indicator equal to 1 if a last one member of the booshedd pursues scendule, and boervalue's district capital, panel B fancidaes a sube polynomial in Euclidean datamet from the observation's district observation's district capital, panel B fancidaes a sube polynomial in Euclidean datamet from the observation's district boordary. All regressions include geographic controls and bunchen segment fixed effects. Column 1 is weighted by boundary. All regressions include geographic controls and bunchen segment fixed effects. Column 1 is weighted by and 00% in column 3. Coefficients that are significantly different from zero are denoted by the following system "10%, "5%, and "41%, and "11%."

Dell (2010): Discussion

- Long-term presence of large landowners ⇒ stable land tenure system ⇒ ↑ public goods provision
 - Note the contrast to Sokoloff and Engermann (2000): there large landowners associated with inequality and underdevelopment. Why?
 - Here large landowners secure property rights + lobby with government for access to public goods subsidies
 - Small-holders without property rights, inequality instituted by land seizures. In contrast Sokoloff and Engermann (2000) assume secure, enfranchised small-holders as a counterfactual to South Americas large landowners.
- Exploring constraints on how the state can be used to shape economic interactions maybe a better starting point than land inequality for modeling Latin America's long-run growth.

Persistence 00000000000

Taking stock

- 1. Social infrastructure (institutions) seem to affect wealth of nations
- 2. Factor endowments determine what institutions emerge
- 3. Effects of institutions are long-lasting; social norms and culture may explain the persistence
- 4. Do not take any single explanation of historical theories of development as a universal fact!
- 5. Big ideas sell well, but many paths could have been just due to mere coincidence, luck, or many other potential explanations:
 - See wide heterogeneity of economic outcomes for countries with very different social infrastructure (Hall and Jones, 1999), across South American countries (Sokoloff and Engerman, 2000), or in slave trade numbers (Nunn, 2008).
- ► Where next? Health and nutrition