Development economics

Lecture 7: The role of culture and institutions in economic development (social capital)

Vojtěch Bartoš

LMU, May 3, 2018

Role of institutions in economic development

Growth reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Culture and persistence of institutions

Growth 000000000000000 History

Growth reexamined

- ► In previous lectures we have shown:
 - ► Huge differences in savings across rich and poor countries
 - Dramatic differences in investment in human capital across countries
 - ► Very low usage of efficient technologies in poor countries
 - ► Enormous differences in economic well-being within countries
- But we did not provide an ultimate answer to the question why the differences arise:
 - Why low savings?
 - Why low investment in education?
 - Why so little technology adoption?
 - Why persistent inequalities?
- ► Potentital causes: Institutions

Growth 000000000000000 History

What are institutions?

- North (1990, p. 3): "Institutions are the rules of the game in a society or, more formally, are the humanly devised constraints that shape human interaction."
 - ► Recall: economics → people respond to incentives. Institutions help shape incentives.
- Distinguish between:
 - Formal institutions: codified rules (passed by governments, local administration)
 - Informal institutions: related to how formal institutions are used, social norms and their enforcement.

Growth 000000000000000 History

Why we need institutions?

Securing property rights:

- ► Constraints on politicians, elites, and everyone to prevent expropriation of others' properties.
- Properties: both physical (land, buildings, machines...), and intellectual (inventions, patents...)
- Contract enforcement:
 - What is written will actually be delivered.
 - Important update: Now I'm deducting half of the class to the left 20% of their final exam grades. What do you think about this?
- ► No exclusion of citizens from participation on the above.

Growth 000000000000000 History

Why we need institutions?

- De Soto (2000, p. 15): "Imagine a country nobody can identify who owns what, addresses cannot be easily verified, people cannot be made to pay their debts, resources cannot conveniently be turned into money, ownership cannot be divided into shares, descriptions of assets are not standardized and cannot be easily compared, and the rules that govern property vary from neighborhood to neighborhood or even street to street. You have just put yourself into life of developing country or a former communist nation."
- "This 80 percent majority is not [...] desperately impoverished. [...] When leaving the door of Nile Hilton, what you are leaving behind is not the high-technology world. [...] The people of Cairo have access to all these things. [...] What you are really leaving behind is the world of legally enforceable transactions on property rights."

Institutions 0000€0 Growth 000000000000000

Property rights and wealth

FIGURE 2. OLS RELATIONSHIP BETWEEN EXPROPRIATION RISK AND INCOME

Source: Acemoglu, Johnson, and Robinson (2001)

Growth 000000000000000

Corruption and wealth

Source: The Economist (2006)

Growth

Role of institutions in economic development

Growth reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Culture and persistence of institutions

 History

Hall and Jones (1999): Why Do Some Countries Produce So Much More Output Per Worker Than Others?

- Differences in per capita income across countries due to differences in *social infrastructure*?
- ► Model: Social infrastructure → Inputs and productivity → Per capita outcome
- ► When social infrastructure missing:
 - Private diversion (mafia, robberies)
 - Government diversion (expropriation, confiscatory taxation, corruption)
- ► Extreme cases: Niger vs. USA social infrastructure able to explain the 35x difference between per capita incomes

Growth oeooooooooooooo History

Hall and Jones (1999): Why Do Some Countries Produce So Much More Output Per Worker Than Others?

Production function:

$$Y_i = K_i^{\alpha} (A_i H_i)^{1-\alpha}$$

- ► K_i... capital stock
- ► A_i... labor-augmenting productivity
- ► *H_i*... human capital stock
- where $H_i = e^{\theta(E_i)}L_i$
 - $\theta(E_i)$... returns to education as in Mincer (1974)
- ► To decompose causes of wealth econometrically, rearrange to per capita (L_i) as:

$$y_i = \left(\frac{K_i}{Y_i}\right)^{\frac{\alpha}{1-\alpha}} h_i A_i$$

Growth 000000000000000

Hall and Jones (1999):

Production function:

$$Y_i = K_i^{\alpha} (A_i H_i)^{1-\alpha}$$

► To decompose causes of wealth econometrically do:

$$Y_i^{\frac{1}{1-\alpha}} = \left[K_i^{\alpha}(A_iH_i)^{1-\alpha}\right]^{\frac{1}{1-\alpha}}$$

$$Y_{i}^{\frac{1-\alpha}{1-\alpha}} \times Y_{i}^{\frac{\alpha}{1-\alpha}} = K_{i}^{\frac{\alpha}{1-\alpha}} A_{i} H_{i}$$

$$Y_i = \left(\frac{K_i}{Y_i}\right)^{\frac{\alpha}{1-\alpha}} A_i H_i$$

▶ Now rearrange to per capita (*L*₁) as follows:

$$y_i = \left(\frac{K_i}{Y_i}\right)^{\frac{\alpha}{1-\alpha}} h_i A_i$$

Growth

Hall and Jones (1999):

$$y_i = \left(\frac{K_i}{Y_i}\right)^{\frac{\alpha}{1-\alpha}} h_i A_i$$

- Can be decomposed into:
 - differences in capital-output ratios
 - differences in average human capital
 - differences in productivity
- Productivity can be calculated as:

$$log(A_i) = log(y_i) - \frac{\alpha}{1-\alpha} log\left(\frac{K_i}{Y_i}\right) - log(h_i)$$

Growth History

Culture

Hall and Jones (1999)

TABLE I						
PRODUCTIVITY	CALCULATIONS:	RATIOS	то	U.	S.	VALUES

		Contribution from		
Country	Y/L	$(K/Y)^{\alpha/(1-\alpha)}$	H/L	A
United States	1.000	1.000	1.000	1.000
Canada	0.941	1.002	0.908	1.034
Italy	0.834	1.063	0.650	1.207
West Germany	0.818	1.118	0.802	0.912
France	0.818	1.091	0.666	1.126
United Kingdom	0.727	0.891	0.808	1.011
Hong Kong	0.608	0.741	0.735	1.115
Singapore	0.606	1.031	0.545	1.078
Japan	0.587	1.119	0.797	0.658
Mexico	0.433	0.868	0.538	0.926
Argentina	0.418	0.953	0.676	0.648
U.S.S.R.	0.417	1.231	0.724	0.468
India	0.086	0.709	0.454	0.267
China	0.060	0.891	0.632	0.106
Kenya	0.056	0.747	0.457	0.165
Zaire	0.033	0.499	0.408	0.160
Average, 127 countries:	0.296	0.853	0.565	0.516
Standard deviation:	0.268	0.234	0.168	0.325
Correlation with Y/L (logs)	1.000	0.624	0.798	0.889
Correlation with A (logs)	0.889	0.248	0.522	1.000

The elements of this table are the empirical counterparts to the components of equation (3), all measured as ratios to the U.S. values. That is, the first column of data is the product of the other three columns.

Source: Hall and Jones

14/62

Hall and Jones (1999)

FIGURE I Productivity and Output per Worker

Source: Hall and Jones (1999)

Growth 00000000000000 History

Hall and Jones (1999)

- But: Why do capital and productivity differ across countries?
 - Productive activities vulnerable to predation (need for protection and/or lower investment in otherwise profitable activities because of insecurity; diversion as a tax)
- Measuring social infrastructure: $S_i = \frac{GADP_i + IT_i}{2}$
 - Index of government antidiversion policies (GADP): combines

 law and order, (ii) bureaucratic quality, (iii) corruption, (iv) risk of expropriation, (v) government repudiation of contracts
 - 2. Openness to international trade (tariffs and quotas as opportunities for diversion)
 - 2.1 Sachs-Warner index: how many years between 1950-1994 a country open: (i) non-tariff barriers cover less than 40% of trade, (ii) average tariff rates less than 40%, (iii) black mkt premium less than 20%, (iv) non-socialist country, (v) no government monopoly on major exports.

Growth 00000000000000

Hall and Jones (1999)

► Original model: Social infrastructure → Inputs and productivity → Per capita outcome

$$\log(y_i) = \alpha + \beta S_i + \varepsilon_i$$

 Note: use restricted model with forced same coefficient for both measures of social infrastructure

Growth 0000000000000000 History

Hall and Jones (1999)

FIGURE II Social Infrastructure and Output per Worker

Source: Hall and Jones (1999)

Growth 0000000000000000 History

Hall and Jones (1999)

► But what if: Per capita outcome → Social infrastructure (i.e. endogeneity of social infrastructure)

$$S_i = \gamma + \delta \log(y_i) + X\theta + u_i$$

- ► Q: Why might social infrastructure be endogenous?
- Solution: Instrumental variables

Hall and Jones (1999)

- Instruments used:
 - Distance from the equator Europeans settled permanently in areas with similar climate (references to working paper resulting in Sokolof and Engerman, 2000; plus see Acemoglu, Johnson and Robinson, 2001)
 - Which languages are spoken as first languages (English, French, Spanish, Portuguese, German) — colonising countries set up different institutions (extractive vs. inclusive)

Growth 00000000000000000

Hall and Jones (1999)

	Dependent variables				
Regressors	Social infrastructure	Log (output per worker)			
Distance from the equator, (0,1) scale	0.708	3.668			
	(.110)	(.337)			
Log of Frankel-Romer predicted trade share	0.058	0.185			
с .	(.031)	(.081)			
Fraction of population speaking English	0.118	0.190			
	(.076)	(.298)			
Fraction of population speaking a European					
language	0.130	0.995			
0 0	(.050)	(.181)			
R^2	.41	.60			

TABLE III REDUCED-FORM REGRESSIONS

N=127. Standard errors are computed using a bootstrap method, as described in the text. A constant term is included but not reported.

Growth 00000000000000

Hall and Jones (1999)

TABLE II	
BASIC RESULTS FOR OUTPUT PER	WORKER
$\log Y/L = \alpha + \beta \tilde{S} + \tilde{\epsilon}$	

Specification	Social infrastructure	OverID test <i>p</i> -value test result	Coeff test <i>p</i> -value test result	σ _ē
1. Main specification	5.1432 (.508)	.256 Accept	.812 Accept	.840
Alternativ	e specifications to	check robustnes	s	
2. Instruments:	4.998	.208	.155	.821
Distance, Frankel-Romer	(.567)	Accept	Accept	
3. No imputed data	5.323	.243	.905	.889
79 countries	(.607)	Accept	Accept	
4. OLS	3.289 (.212)	_	.002 Reject	.700

The coefficient on Social infrastructure reflects the change in log output per worker associated with a non-unit increase in measure of social infrastructure. For example, the coefficient of 5.14 means than a difference of 0.1 in our measure of social infrastructure is associated with a 5.14 percent difference in output per worker. Standard errors are computed using a boolstrap method, as described in the text. The main specification take distance in the equation of the population and the social infrastructure is associated with a 5.14 percent difference in output per worker. Standard errors are computed using a boolstrap method, as described in the text. The main specification take distance in the equation of the text of the text of the social information of the population as instruments. The OverD but on column reports the result of texting for the overdient dipring restrictions, and the openness variable. The standard deviation of 100 gr 1/L is 1.078.

Source: Hall and Jones (1999)

- ► For OLS: 0.01 increase in S_i is associated with an increase in per capita output of 3.29 percent
- For 2SLS: 0.01 increase in S_i is associated with an increase in per capita output of 5.14 percent

Hall and Jones (1999)

TABLE IV
RESULTS FOR $\log K/Y$, $\log H/L$, and $\log A$
$Component = \alpha + \beta \tilde{S} + \tilde{\epsilon}$

	Dependent variable				
	$\frac{\alpha}{1-\alpha}\log K/Y$	$\log H/L$	$\log A$		
Social infrastructure	1.052	1.343	2.746		
	(.164)	(.171)	(.336)		
OverID test (p)	.784	.034	.151		
Test result	Accept	Reject	Accept		
σ̂ē	.310	.243	.596		
$\hat{\sigma}_{Depvar}$.320	.290	.727		

Estimation is carried out as in the main specification in Table II. Standard errors are computed using a bootstrap method, as described in the text.

FACTORS OF VARIATION. MAXIMUM/MINIMUM						
	Y/L	$(K/Y)^{\alpha/(1-\alpha)}$	H/L	A		
Observed factor of variation	35.1	4.5	3.1	19.9		
Ratio, 5 richest to 5 poorest countries	31.7	1.8	2.2	8.3		
Predicted variation, only measurement error	38.4	2.1	2.6	7.0		
Predicted variation, assuming $r_{\tilde{S},S}^2 = .5$	25.2	1.9	2.3	5.6		

TABLE V						
FACTORS	OF	VARIATION:	MAXIMUM/MINIMUM			

The first two rows report actual factors of variation in the data, first for the separate components and then for the geometric average of the five richest and five poorest countries (sorted according to Y/L). The last two rows report predicted factors of variation based on the estimated range of variation of true social infrastructure. Specifically, these last two rows report exp $(r\beta_{FV}(S_{max} - \tilde{S}_{mb}))$, first with r = .800 and second with $r^2 = .5$.

Growth 000000000000000 History

Role of institutions in economic development

Growth reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Culture and persistence of institutions

Growth 000000000000000

Sokoloff and Engerman (2000)

- But why do countries have different levels of social infrastructure (or social capital)?
- ► US and Canada now among richest countries in the world. Central and South America rather considered a laggard.
- But from a historical perspective we would foresee a different story:
 - Voltaire: French and British fighting over North America during Seven Years' War (1756-63): madness, this "fighting over a few acres of snow."
 - ► After British won, repatriation considerations: should we take the island of Guadeloupe or Canada?
 - ► 1700: Caribbean richest (regardless of country of origin of colonization), Mexico on par with the US
- Being rich does not always produce good institutions (recall the correlation graph at the beginning).
 - What (might have) happened?

Growth 0000000000000000

Sokoloff and Engerman (2000)

Table 1

The Record of Gross Domestic Product per Capita in Selected New World Economies, 1700–1997

	GDP per capita relative to the U.S.					
	1700	1800	1900	1997		
Argentina	_	102	52	35		
Barbados	150	_	_	51		
Brazil	_	50	10	22		
Chile	_	46	38	42		
Cuba	167	112	_	_		
Mexico	89	50	35	28		
Peru	_	41	20	15		
Canada	_	—	67	76		
United States (GDP p.c. in 1985\$)	550	807	3,859	20,230		

Note and Sources: The relative GDP per capita figures for Latin American countries come primarily from Coatsworth (1998). Coatsworth relied extensively on Maddison (1994), and we draw our estimates for Canada and the United States in 1800 and 1900 from the same source (using linear interpolation to obtain the 1900 figures from 1890 and 1913 estimates). The GDP per capita estimates for Barbados in 1700 are from Elits (1995). The 1997 figures are based on the estimates of GDP with purchasing power parity adjustments in World Bank (1999). Since there was no adjustment factor reported for Barbados in that year, we used that for Jamaica in our calculations. The 1700 figure for the United States was obtained from Gallman (2000), by projecting backward the same rate of growth that Gallman estimated between 1774 and 1800. Maddison (1991) has published alternative sets of estimates, which yield somewhat different growth paths (especially for Argentina) during the late innieteenth and early twentieth century than does Coatsworth, but the qualitative implications of the different estimates and he has a more positive assessment of Brazilian economic performance during the early nineteenth century than does Coatsworth, but the qualitative implications of the different estimates and for the propose.

Source: Sokoloff and Engerman (2000)

Growth 000000000000000

Sokoloff and Engerman (2000)

- Factor endowments at critical points of history (colonization) lead to differences in distribution of political power
- Three types of countries:
 - 1. Large-scale staple crop producers (e.g., Barbados, Cuba, Jamaica, Brazil)
 - 2. Mineral extractors (e.g., Mexico, Peru)
 - 3. Basic agricultural production (US, Canada)
- ► (1) and (2) needed lots of manual labor: either through import of slave labor (1) or through enslaving domestic population where there was plenty (2).
 - Legally codified inequality intrinsic to slavery created inequalities in political rights and institutional setting shaping the development centuries later.
 - Reason: value of keeping power too large to give up in unequal societies + more likely to crush dissent (Compare to situations of more equal countries.)

Growth 000000000000000

Sokoloff and Engerman (2000)

Laws Governing the Franchise and the Extent of Voting in Selected American Countries, 1840–1940

		Lack of	TTT 1.1	T 11	Proportion of
		Secrecy In Balloting	wealth Requirement	Literacy Requirement	the Population Voting
		0	1840-80	1	0
Chile	1869	Y	Y	Y	1.6%
Costa Rica	1890	Y	Y	Y	_
Ecuador	1856	Y	Y	Y	0.1
Mexico	1840	Y	Y	Y	_
Peru	1875	Y	Y	Y	_
Uruguay	1880	Y	Y	Y	_
Venezuela	1880	Y	Y	Y	_
Canada	1867	Y	Y	Ν	7.7
	1878	Ν	Y	N	12.9
United States	1850^{a}	Ν	Ν	Ν	12.9
	1880	Ν	Ν	Ν	18.3

Source: Sokoloff and Engerman (2000)

Growth 000000000000000

Role of history in shaping institutions

- ► Now on slave trade from the other side of the ocean.
 - ► Further evidence on historical "experiments" predisposing countries to have worse institutions.
- One explanation for Africa's underdevelopment is its history of extraction, characterised by two events: the slave trades and colonialism.
 - On colonialism in readings: Acemoglu, Johnson, and Robinson (2001).

Growth

Nunn (2008): The long-term effects of Africa's slave trades

- Q: Does the intensity of slave trade predict wealth of African countries centuries later?
- Manning (1990, p. 124): "Slavery was corruption: it involved theft, bribery, and exercise of brute force as well as ruses. Slavery thus may be seen as one source of precolonial origins for modern corruption."
- ► Nunn collected the number of slaves exported from each country in Africa in each century between 1400 and 1900 by combining data from ship records on the number of slaves shipped from each African port or region with data from a variety of historical documents that report the ethnic identities of slaves that were shipped from Africa.

Growth

Nunn (2008): The long-term effects of Africa's slave trades

Isocode	Country name	Trans- Atlantic	Indian Ocean	Trans- Saharan	Red Sea	All slave trades
AGO	Angola	3,607,020	0	0	0	3,607,020
NGA	Nigeria	1,406,728	0	555,796	59,337	2,021,859
GHA	Ghana	1,614,793	0	0	0	1,614,793
ETH	Ethiopia	0	200	813,899	633,357	1,447,455
SDN	Sudan	615	174	408,261	454,913	863,962
MLI	Mali	331,748	0	509,950	0	841,697
ZAR	Democratic	759,468	7,047	0	0	766,515
	Republic of Congo					
MOZ	Mozambique	382,378	243,484	0	0	625,862
TZA	Tanzania	10,834	523,992	0	0	534,826
TCD	Chad	823	0	409,368	118,673	528,862
BEN	Benin	456,583	0	0	0	456,583
SEN	Senegal	278,195	0	98,731	0	376,926
GIN	Guinea	350,149	0	0	0	350,149
TGO	Togo	289,634	0	0	0	289,634
GNB	Guinea-Bissau	180,752	0	0	0	180,752
BFA	Burkina Faso	167,201	0	0	0	167,201
MRT	Mauritania	417	0	164.017	0	164.434

 TABLE II

 ESTIMATED TOTAL SLAVE EXPORTS BETWEEN 1400 AND 1900 BY COUNTRY

Source: Nunn (2008)

Growth

Nunn (2008): The long-term effects of Africa's slave trades

FIGURE III Relationship between Log Slave Exports Normalized by Land Area, ln(exports/area), and Log Real Per Capita GDP in 2000, ln y

Source: Nunn (2008)

Growth

Nunn (2008): The long-term effects of Africa's slave trades

	Depende	nt variable	e is log rea	l per capit	a GDP in 2	000, ln y
	(1)	(2)	(3)	(4)	(5)	(6)
ln(exports/area)	-0.112***	-0.076***	-0.108***	-0.085**	-0.103***	-0.128***
	(0.024)	(0.029)	(0.037)	(0.035)	(0.034)	(0.034)
Distance from		0.016	-0.005	0.019	0.023	0.006
equator		(0.017)	(0.020)	(0.018)	(0.017)	(0.017)
Longitude		0.001	-0.007	-0.004	-0.004	-0.009
0		(0.005)	(0.006)	(0.006)	(0.005)	(0.006)
Lowest monthly		-0.001	0.008	0.0001	-0.001	-0.002
rainfall		(0.007)	(0.008)	(0.007)	(0.006)	(0.008)
Avg max humidity		0.009	0.008	0.009	0.015	0.013
•		(0.012)	(0.012)	(0.012)	(0.011)	(0.010)
Avg min		-0.019	-0.039	-0.005	-0.015	-0.037
temperature		(0.028)	(0.028)	(0.027)	(0.026)	(0.025)
ln(coastline/area)		0.085**	0.092**	0.095**	0.082**	0.083**
		(0.039)	(0.042)	(0.042)	(0.040)	(0.037)
Island indicator				-0.398	-0.150	
				(0.529)	(0.516)	
Percent Islamic				-0.008***	-0.006*	-0.003
				(0.003)	(0.003)	(0.003)
French legal origin				0 755	0.643	-0.141
r roman nogar origin				(0.503)	(0.470)	(0.734)
North Africa				0.382	-0.304	(0.1.0.1)
indicator				(0.484)	(0.517)	
ln(gold prod/pop)				(01101)	0.011	0.014
m(Boin hiomhoh)					(0.017)	(0.015)
ln(oil prod/pop)					0.078***	0.088***
m(on prou pop)					(0.027)	(0.025)
ln(diamond					-0.039	_0.048
nrod/non)					(0.043)	(0.041)
Colonizer fixed	Yes	Yes	Yes	Yes	Yes	Yes
Number obs.	52	52	42	52	52	42
R^2	.51	.60	.63	.71	.77	.80

TABLE III RELATIONSHIP BETWEEN SLAVE EXPORTS AND INCOME

Growth 000000000000000

Nunn (2008): The long-term effects of Africa's slave trades

- So far: OLS estimates shows a relationship between slave exports and current economic performance.
- But: What if societies that were initially underdeveloped selected into the slave trades, and these societies continue to be underdeveloped today? What to do?

Growth

Nunn (2008): The long-term effects of Africa's slave trades

► Historical evidence on selection during slave trade

- "Only societies with institutions that were sufficiently developed were able to facilitate trade with the Europeans." (Nunn, 2008, p. 157)
- More prosperous areas also the most densely populated.
 Population density as a proxy for wealth (Acemoglu, Johnson, and Robinson, 2002)
- \blacktriangleright Most prosperous countries in 1400 most impacted by slave trades \rightarrow

Growth 000000000000000

Nunn (2008): The long-term effects of Africa's slave trades

 $\label{eq:FIGURE} F_{\rm IGURE} \ IV$ Relationship between Initial Population Density and Slave Exports

Source: Nunn (2008)

Growth 000000000000000

Nunn (2008): The long-term effects of Africa's slave trades

- Instruments for slave trade: "location of demand that influenced the location of supply and not vice versa" (Nunn, 2008, p. 160)
 - Sailing distance from main importing places across Atlantic ocean (Virginia, USA; Havana, Cuba; Haiti; Kingston, Jamaica; Dominica; Martinique; Guyana; Salvador, Brazil; and Rio de Janeiro, Brazil)
 - 2. The sailing distance from the point on the coast to the closest of the two major slave destinations of the Indian Ocean slave trade (Mauritius and Muscat, Oman)
 - 3. Overland distance from a closest port of export for the trans-Saharan slave trade (Algiers, Tunis, Tripoli, Benghazi, and Cairo).
- Minimum distance used (average and median give similar results).

Growth 000000000000000

Nunn (2008): The long-term effects of Africa's slave trades

Panel A. Transatlantic slave trade

Source: Nunn and Watchkenson (2011)

Panel B. Indian Ocean slave trade

38/62

Growth 000000000000000

Nunn (2008): The long-term effects of Africa's slave trades

FIGURE V Example Showing the Distance Instruments for Burkina Faso

Source: Nunn (2008)

Growth

History 0000000000000000000000

Nunn (2008): The long-term effects of Africa's slave trades

First Stage. Dependent variable is slave exports, ln(exports/area)

Atlantic distance	-1.31^{***}	-1.74^{***}	-1.32^{*}	-1.69^{**}
	(0.357)	(0.425)	(0.761)	(0.680)
Indian distance	-1.10^{***}	-1.43^{***}	-1.08	-1.57^{*}
	(0.380)	(0.531)	(0.697)	(0.801)
Saharan distance	-2.43^{***}	-3.00***	-1.14	-4.08^{**}
	(0.823)	(1.05)	(1.59)	(1.55)
Red Sea distance	-0.002	-0.152	-1.22	2.13
	(0.710)	(0.813)	(1.82)	(2.40)
F-stat	4.55	2.38	1.82	4.01
Colonizer fixed	No	Yes	Yes	Yes
effects				
Geography controls	No	No	Yes	Yes
Restricted sample	No	No	No	Yes
Hausman test (<i>p</i> -value)	.02	.01	.02	.04
Sargan test (p-value)	.18	.30	.65	.51

Source: Nunn (2008)

Growth 000000000000000 History 00000000000000

Nunn (2008): The long-term effects of Africa's slave trades

	(1)	(2)	(3)	(4)
Second Sta	age. Dependent v	ariable is log in	come in 200	0, ln y
ln(exports/area)	-0.208^{***}	-0.201^{***}	-0.286^{*}	-0.248^{***}
	(0.053)	(0.047)	(0.153)	(0.071)
	[-0.51, -0.14]	[-0.42, -0.13]	$[-\infty, +\infty]$	[-0.62, -0.12]
Colonizer fixed effects	No	Yes	Yes	Yes
Geography controls	No	No	Yes	Yes
Restricted sample	No	No	No	Yes
F-stat	15.4	4.32	1.73	2.17
Number of obs.	52	52	52	42
	Source:	Nunn (2008)		

TABLE IV ESTIMATES OF THE RELATIONSHIP BETWEEN SLAVE EXPORTS AND INCOME

Check: distance from slave ports used to determine wealth outside Africa: no effect. Q: Why such check needed?

Growth 000000000000000 Culture

Role of institutions in economic development

Growth reexamined: institutions

History, factor endowments, institutions, and wealth of nations

Culture and persistence of institutions

Growth 000000000000000

Nunn and Wantchekon (2011): The Slave Trade and the Origins of Mistrust in Africa

- But what is it about slave trade that caused worse institutions now?
 - Recall Manning (1990, p. 124): "Slavery was corruption: it involved <u>theft</u>, bribery, and exercise of brute force as well as <u>ruses</u>."
 - Add Nunn and Wantchekon (2011): "Initially, slaves were captured primarily through state organized raids and warfare, but as the trade progressed, the environment of ubiquitous insecurity caused <u>individuals to turn on others</u> — including friends and family members — and to <u>kidnap</u>, <u>trick</u>, and <u>sell each other into slavery</u> (Koelle 1854; Hair 1965; Piot 1996)."
- Does the mistrust prevail in societies exposed to most slave trade up until these days?

Growth

Nunn and Wantchekon (2011)

- ► Why the persistence?
 - Cultural anthropology: rules of thumbs (social norms) used for decision-making in environments where information acquisition costly or imperfect (Boyd and Richerson, 1985).
 - Social norms of mistrust towards others likely more beneficial than norms of trust in a society where you can get kidnapped by your cousin.
- Measuring trust: 2005 Afrobarometer survey
 - How much your trust your relatives / neighbors / locally elected government council / those in the same country from other ethnic groups / those from the same ethnic group?
 - ► Not at all / just a little / somewhat / a lot.

Growth

History

Nunn and Wantchekon (2011)

• Estimation strategy:

 $\textit{trust}_{i,e,d,c} = \alpha_{c} + \beta \textit{slaveexports}_{e} + X'_{i,e,d,c} \Gamma + X'_{d,c} \Omega + X'_{e} \Theta + \varepsilon_{i,e,d,c}$

- trust_{i,e,d,c}... natural log of one plus slave exports normalized by land area (measure normalized by the size of ethnic groups)
- ▶ *e*... ethnic group
- ► *d*... district
- ► *c* . . . country
- $X'_{i,e,d,c}$... age, gender, urban/rural, religion, occupation
- ► X^ℓ_{d,c}... district ethnic fractionalization, share of the district's population that is of the same ethnicity as the respondent
- ► X'_e... ethnicity-level variables capturing historical characteristics of ethnicities, and differing impacts of colonial rule on ethnic groups (prevalence of malaria, 1400 urbanization indicator variable, sophistication of precolonial settlements, precolonial sophistication of political institutions...)

Growth

Nunn and Wantchekon (2011)

	Trust	Trust	Trust of	Intra-	Inter-
	of	of	local	group	group
	relatives	neighbors	council	trust	trust
	(1)	(2)	(3)	(4)	(5)
ln (1+exports/area)	-0.133***	-0.159***	-0.111^{***}	-0.144***	-0.097***
	(0.037)	(0.034)	(0.021)	(0.032)	(0.028)
Individual controls	Yes	Yes	Yes	Yes	Yes
District controls	Yes	Yes	Yes	Yes	Yes
Country fixed effects	Yes	Yes	Yes	Yes	Yes
Number of observations Number of ethnicity clusters Number of district clusters R^2	20,062 185 1,257 0.13	20,027 185 1,257 0.16	19,733 185 1,283 0.20	19,952 185 1,257 0.14	19,765 185 1,255 0.11

TABLE 2-OLS ESTIMATES OF THE DETERMINANTS OF THE TRUST OF OTHERS

Notes: The table reports OLS estimates. The unit of observation is an individual. Standard errors are adjusted for two-way clustering at the ethnicity and district levels. The individual controls are for age, age squared, a gender indicator variable, five living conditions fixed effects, ten education fixed effects, 18 religion fixed effects, 25 occupation fixed effects, and an indicator for whether the respondent lives in an urban location. The district controls include ethnic fractionalization in the district and the share of the district's population that is the same ethnicity as the respondent.

Source: Nunn and Wantchekon (2011)

Growth 000000000000000

Nunn and Wantchekon (2011)

- But: what if ethnic groups that were inherently less trusting were more likely to be taken during the slave trades? How to control for this possible reverse causality?
- Already have some controls for ethnic group fixed effects (see previous slide), but still possibly some *omitted variables*?
- Instrumental variables: Historical distance of the ethnic group from the coast.

Growth

Nunn and Wantchekon (2011)

	Trust of relatives (1)	Trust of neighbors (2)	Trust of local council (3)	Intragroup trust (4)	Intergroup trust (5)
Second stage: Dependent variable	is an individual's	trust			
ln (1+exports/area)	-0.190^{***}	-0.245^{***}	-0.221^{***}	-0.251^{***}	-0.174^{**}
	(0.067)	(0.070)	(0.060)	(0.088)	(0.080)
Hausman test (<i>p</i> -value) R^2	0.88	0.53	0.09	0.44	0.41
	0.13	0.16	0.20	0.15	0.12
First stage: Dependent variable is l	n (1+exports/ar	rea)			
Historical distance of ethnic	-0.0014^{***}	-0.0014***	-0.0014***	-0.0014***	-0.0014***
group from coast	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Colonial population density	Yes	Yes	Yes	Yes	Yes
Ethnicity-level colonial controls	Yes	Yes	Yes	Yes	Yes
Individual controls	Yes	Yes	Yes	Yes	Yes
District controls	Yes	Yes	Yes	Yes	Yes
Country fixed effects	Yes	Yes	Yes	Yes	Yes
Number of observations	16,709	16,679	15,905	16,636	16,473
Number of clusters	147 / 1,187	147 / 1,187	146 / 1,194	147 / 1,186	147 / 1,184
F-stat of excl. instrument	26.9	26.8	27.4	27.1	27.0
R^2	0.81	0.81	0.81	0.81	0.81

TABLE 5—IV ESTIMATES OF THE EFFECT OF THE SLAVE TRADE ON TRUST

Notes: The table reports IV estimates. The top panel reports the second-stage estimates, and the bottom panel reports first-stage estimates. Standard errors are adjusted for two-way clustering at the ethnicity and district levels. The individual controls, district controls, ethnicity-level colonial controls, and colonial population density measures are described in <u>Table 3</u>. The null hypothesis of the Hausman test is that the OLS estimates are consistent.

Source: Nunn and Wantchekon (2011)

Growth

Nunn and Wantchekon (2011)

TABLE 8—REDUCED FORM RELATIONSHIP BETWEEN THE DISTANCE FROM THE COAST AND TRUST WITHIN AND OUTSIDE OF AFRICA

	Intergroup trust						
	Afrobarome	eter sample	WVS non-	WVS Nigeria			
	(1)	(2)	(3)	(4)	(5)		
Distance from the coast	0.00039*** (0.00013)	0.00037*** (0.00012)	-0.00020 (0.00014)	-0.00019 (0.00012)	0.00054*** (0.00010)		
Country fixed effects Individual controls	Yes No	Yes Yes	Yes No	Yes Yes	n/a Yes		
Number of observations Number of clusters R^2	19,970 185 0.09	19,970 185 0.10	10,308 107 0.09	10,308 107 0.11	974 16 0.06		

Notes: The table reports OLS estimates. The unit of observation is an individual. The dependent variable in the WVS sample is the respondent's answer to the question: "How much do you trust <nationality> people in general?" The categories for the respondent's answers are: "not at all," "not very much," "neither trust nor distrust," "a little," and "completely." The responses take on the values 0, 1, 1.5, 2, and 3. Standard errors are clustered at the ethnicity level in the Afrobarometer regressions and at the location (city) level in the Asiabarometer and the WVS samples. The individual controls are for age, age squared, a gender indicator, an indicator for living in an urban location, and occupation fixed effects.

*** Significant at the 1 percent level.

- **Significant at the 5 percent level.
- *Significant at the 10 percent level.

Source: Nunn and Wantchekon (2011)

Growth

Nunn and Wantchekon (2011)

- How does the mistrust persist?
 - 1. General beliefs or "rules-of-thumb" based on mistrust transmitted from parents to children over time (**social norms**).
 - 2. Slave trade resulted in a deterioration of legal and political institutions. Because these institutions persist, individuals are not constrained to act in a trustworthy manner, leading to lower trust (legal enforcement).
- Both channels seem to be at play.

Growth 000000000000000 History

Dell (2010): The Persistent Effects of Peru's Mining Mita

- Further understanding mechanisms behind the role of historical institutions in persistence of present day underdevelopment
- ► This paper: land tenure and public goods as channels
- Setting:
 - Mining *mita* in Peru and Bolivia instituted by Spanish government (1573-1812): one-seventh of adult male population of over 200 communities forced to work in silver and mercury mines.
- ► Identification strategy: regression discontinuity design (RDD)
 - Validity: all relevant factors besides treatment show no discontinuity; only focuses on a subset of the border region that satisfies this (part of the Andean range in southern Peru)

Growth

Dell (2010)

FIGURE 1.—The *mita* boundary is in black and the study boundary in light gray. Districts falling inside the contiguous area formed by the *mita* boundary contributed to the *mita*. Elevation is shown in the background.

Source: Dell (2010)

Growth

History

Dell (2010)

 $c_{idb} = \alpha + \gamma mita_d + X'_{id}\beta + f(\text{geographic locationd id}) + \Phi_b + \varepsilon_{idb}$

- Identification assumptions:
 - ► E[c₁|lat, lon] and E[c₀|lat, lon] continuous at the discontinuity threshold (c... outcomes (geographical data, ethnicity, pre-mita data on settlements and taxation).
 - Treatment effect is identified using only the variation at the discontinuity: here need to rely on samples 25km, 50km, 75km, and 100km from *mita* boundary
 - ► No migration across boundaries: not satisfied during *mita* period, now reasonable (land tenure)
 - ► i... individual, b... segment of the mita boundary, d... district
 - ► f(geographic locationd id)... RD polynomial controlling for smooth functions of geographic location
 - Φ_{h} ... boundary segment fixed effects

Growth

Dell (2010)

- "Black box" results:
 - Using present day household survey data: equivalent household consumption lower by 25% and childhood stunting higher by 6 p.p. in *mita* subjected districts
- Examining channels:
 - ► Using data from the Spanish Empire and Peruvian Republic
 - ► Focus on land tenure (formation of *haciendas*), public goods, and market participation. Data:
 - ► Haciendas in 1689, 1845, and 1940 (parish reports)
 - Education: Population Census (1876 and 1940), ENAHO (2001)
 - ► Roads: GIS road map of Peru produced by the Ministro de Transporte (2006)
 - Agriculture: Population Census (1993), Agricultural Census (1994)
 - Results: *mita* limited the establishment of large landowners + land tenure affected public goods provision and smallholder participation in agricultural markets

Dell (2010): Modern results

				Dependent Variable			
	Log Eq	uiv. Hausehold Consumpti	on (2001)		Stunted Growth, C	'hildren 6–9 (2005)	
Sample Within:	<100 km	<75 km	<50 km	<100 km	<75 km	<50 km	Border
	of Bound.	of Bound.	of Bound.	of Bound.	of Bound.	of Bound.	District
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
		Panel A	. Cubic Polynomial in	Latitude and Longitu	ıde		
Mita	-0.284	-0.216	-0.331	0.070	0.084^{*}	0.087^{*}	0.114**
	(0.198)	(0.207)	(0.219)	(0.043)	(0.046)	(0.048)	(0.049)
R^2	0.060	0.060	0.069	0.051	0.020	0.017	0.050
		Pane	B. Cubic Polynomial	in Distance to Potosí			
Mita	-0.337***	-0.307***	-0.329***	0.080***	0.078***	0.078***	0.063*
	(0.087)	(0.101)	(0.096)	(0.021)	(0.022)	(0.024)	(0.032)
R^2	0.046	0.036	0.047	0.049	0.017	0.013	0.047
		Panel C.	Cubic Polynomial in I	Distance to Mita Boun	dary		
Mita	-0.277***	-0.230**	-0.224**	0.073***	0.061***	0.064***	0.055*
	(0.078)	(0.089)	(0.092)	(0.023)	(0.022)	(0.023)	(0.030)
R^2	0.044	0.042	0.040	0.040	0.015	0.013	0.043
Geo. controls	ves	ves	ves	ves	ves	ves	ves
Boundary F.E.s	ves	ves	ves	ves	ves	ves	ves
Clusters	71	60	52	289	239	185	63
Observations	1478	1161	1013	158,848	115,761	100,446	37,421

LIVING STANDARDS^a

⁴The unit of observation is the household in columns 1-3 and the individual in columns 4-7. Robust standard errors, adjusted for diverting by district, are in parentheses. The dependent variable is log equivalent household consumption (CNAMO (2001)) in columns 1-3, and a duming equal to 1 if the household robust standard or columns 4-7. Robust standard errors, adjusted for diverting by district, are in parentheses. The dependent variable is log equivalent household do communs 6-1, Robust and equal to 0 otherwise (Saignes (1984), Amar J hunie (1987), page 249, 249). Then A includes a cubic polynomial in the latitude and equal to 0 otherwise (Saignes (1984), Amar J hunie (1987), page 249, 249). Then A includes a cubic polynomial in the latitude and equal to 0 otherwise (Saignes (1984), Amar J hunie (1987), page 249, 249). Then A includes a cubic polynomial in the latitude and distance to the naire equivalent household's district, are in particularly and the includes and the polynomial in the latitude and the polynomial in the latitude and the polynomial is district, are in the nair houndary. All regressions lineduce controls for elevation and slope, an well as houndary segment the effect of ELS. (Channes 1-3 include controls for elevation and slope, and all as houndary segment the effect of ELS.) The includes are chanced by the following columns. Channes are related to the nair beamders, T8% in columns 1-3, 86% in column 4, 71% in columns T-2 includes the equivalent househord to 2, 86% in column 4, 71% in column 5, 68% in column 6, 208% in column 6,

Growth 000000000000000

Dell (2010): Manipulation check

TABLE V

1572 TRIBUTE AND POPULATION^a

				Depender	nt Variable			
		5	Share of Trib	ute Revenu	es			
	Log Mean	Spanish	Spanish	Spanish	Indig.		Percent	
	Tribute	Nobility	Priests	Justices	Mayors	Men	Boys	Females
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Panel	A. Cubic	Polynomia	l in Latitu	ide and L	ongitude		
Mita	0.020	-0.010	0.004	0.004	0.003	-0.006	0.011	-0.009
	(0.031)	(0.030)	(0.019)	(0.010)	(0.005)	(0.009)	(0.012)	(0.016)
R^2	0.762	0.109	0.090	0.228	0.266	0.596	0.377	0.599
	Pa	nel B. Cub	ic Polynor	nial in Di	stance to I	Potosí		
Mita	0.019	-0.013	0.008	0.006	-0.001	-0.012	0.005	-0.011
	(0.029)	(0.025)	(0.015)	(0.009)	(0.004)	(0.008)	(0.010)	(0.012)
R^2	0.597	0.058	0.073	0.151	0.132	0.315	0.139	0.401
	Panel C	C. Cubic Pe	olynomial	in Distand	e to Mita	Boundary		
Mita	0.040	-0.009	0.005	0.003	-0.001	-0.011	0.001	-0.008
	(0.030)	(0.018)	(0.012)	(0.006)	(0.004)	(0.007)	(0.008)	(0.010)
R^2	0.406	0.062	0.096	0.118	0.162	0.267	0.190	0.361
Geo. controls	yes	yes	yes	yes	yes	yes	yes	yes
Boundary F.E.s	yes	yes	yes	yes	yes	yes	yes	yes
Mean dep. var.	1.591	0.625	0.203	0.127	0.044	0.193	0.204	0.544
Observations	65	65	65	65	65	65	65	65

*The dependent variable in column 1 is the log of the district's mean 1572 tribute rate (Miranda (1583)). In columns 2-8, it is the share of tribute revenue allocated to Spanish nobility (mcomularos), Spanish priests, Spanish (1583), the composed or mlass (aged 18-50), how, and fernales (or all ages), respectively. Panel A includes a subic polynomial in large and any and and a spanish mean spanish priests, Spanish and a spanish mean spanish priests, Spanish (1583), and a spanish spanish (1583), and a spanish spanish (1583), and (1583), a

Sources Dell (2010)

Growth 000000000000000

Dell (2010): Channels: land ownership

LAND TENURE AND LABOR SYSTEMS*

			Dependent Variable		
	Haciendas per District in 1689 (1)	Haciendas per 1000 District Residents in 1689 (2)	Percent of Rural Tributary Population in <i>Haciendas</i> in ca. 1845 (3)	Percent of Rural Population in <i>Haciendas</i> in 1940 (4)	Land Gini in 1994 (5)
			1	5.1	
Mita	-12.683*** (3.221)	-6.453** (2.490)	-0.127* (0.067)	-0.066	0.078
R^2	0.538	0.582	0.410	0.421	0.245
	Panel B.	Cubic Polynomia	al in Distance to	Potosí	
Mita	-10.316*** (2.057)	-7.570*** (1.478)	-0.204** (0.082)	-0.143*** (0.051)	0.107*** (0.036)
R^2	0.494	0.514	0.308	0.346	0.194
Mita	Panel C. Cubi -11.336*** (2.074)	c Polynomial in -8.516*** (1.665)	Distance to Mita -0.212*** (0.060)	Boundary -0.120*** (0.045)	0.124*** (0.033)
R^2	0.494	0.497	0.316	0.336	0.226
Geo. controls Boundary F.E.s Mean dep. var. Observations	yes yes 6.500 74	yes yes 5.336 74	yes yes 0.135 81	yes yes 0.263 119	yes yes 0.783 181

^aThe unit of observation is the district. Robust standard errors are in parentheses. The dependent variable in column 1 is *haciendus* per followist in table of district residents in 1689 (Villamusze) Urteaga (1983)). In column 3 it is the percentage of the district's tradent population residing in *haciendus* are 1000 (District residents in 1689 (Villamusze) (Derath Rait (1991)). in column 4 is the percentage of the district's tradent population residing in *haciendus* are 1040 (Direction de Estadistica del Perú (1944)), and in column 3 it is the district strate population residing in *haciendus* are 1040 (Direction de Estadistica del Perú (1944)), and in column 3 it is the district strate population residing in *haciendus* are 1040 (Direction de Estadistica del Perú (1944)), and in column 3 it is the district strate population residing in *columa* are acubic polynomial in Eculidate and bistorio to the matery population of the matery barry and are strated and strates from the observation's district capital lor Potost, and panel C Includes a cubic polynomial negative of the nearest point on the *mini* broundary. All regressions include geographic controls and broundary are generat fixed effects. The samples include district whose capital are less than 50 km from the *mini* broundary are generat fixed editorit's wint population. SNS' of the observation's district runt districts in columns 1 and 2. SNS' in column 5. Cxefficients that are significantly different from zero are denoted by the following weaks: "UPM". SNS A and ***16.

History

Dell (2010): Channels: Public goods: Education

EDUCATION⁸

		Dependent Variable	
		Mean Years	Mean Years
	Literacy	of Schooling	of Schooling
	1876	1940	2001
	(1)	(2)	(3)
	Panel A. Cubic Polynomial i	n Latitude and Longitude	
Mita	-0.015	-0.265	-1.479^{*}
	(0.012)	(0.177)	(0.872)
R^2	0.401	0.280	0.020
	Panel B. Cubic Polynomia	d in Distance to Potosí	
Mita	-0.020***	-0.181^{**}	-0.341
	(0.007)	(0.078)	(0.451)
R^2	0.345	0.187	0.007
	Panel C. Cubic Polynomial in	Distance to Mita Boundary	
Mita	-0.022***	-0.209^{***}	-0.111
	(0.006)	(0.076)	(0.429)
R^2	0.301	0.234	0.004
Geo. controls	yes	yes	yes
Boundary F.E.s	yes	yes	yes
Mean dep. var.	0.036	0.470	4.457
Clusters	95	118	52
Observations	95	118	4038

^aThe unit of observation is the district in columns 1 and 2 and the individual in column 3. Robust standard errors, adjusted for clustering by district, are in parentheses. The dependent variable is mean literacy in 1876 in column 1 (Dirección de Estadística del Perú (1878)), mean years of schooling in 1940 in column 2 (Dirección de Estadística del Perú (1944)), and individual years of schooling in 2001 in column 3 (ENAHO (2001)). Panel A includes a cubic polynomial in the latitude and longitude of the observation's district capital, panel B includes a cubic polynomial in Euclidean distance from the observation's district capital to Potosi, and panel C includes a cubic polynomial in Euclidean distance to the nearest point on the mita boundary. All regressions include geographic controls and boundary segment fixed effects. The samples include districts whose capitals are less than 50 km from the mita boundary. and many and the second of the district's population, only of the construction of the

Growth 000000000000000

Dell (2010): Channels: Public goods: Roads

ROADS⁸

		Dependent Variable	
	Density of Local Road Networks (1)	Density of Regional Road Networks (2)	Density of Paved/Gravel Regional Roads (3)
	Panel A. Cubic Polynomial	in Latitude and Longitude	
Mita	0.464 (18.575)	-29.276* (16.038)	-22.426* (12.178)
R^2	0.232	0.293	0.271
	Panel B. Cubic Polynomi	al in Distance to Potosí	
Mita	-1.522 (12.101)	-32.644*** (8.988)	-30.698*** (8.155)
R^2	0.217	0.271	0.256
	Panel C. Cubic Polynomial in	Distance to Mita Boundary	
Mita	0.535 (12.227)	-35.831*** (9.386)	-32.458*** (8.638)
R^2	0.213	0.226	0.208
Geo. controls Boundary F.E.s Mean den var	yes yes	yes yes	yes yes
Observations	185	185	185

⁴The unit of observation is the district. Robust standard errors are in parentheses. The road densities are defined as total length in meters of the respective road type in each district divided by the district's surface area, in kilometers squared. They are calculated using a GIS map of Perri's road networks (Ministro de Transporte (2006)). Panel A includes a cubic polynomial in the Earliet and Iongitude of the observation's district capital parel B includes a cubbic polynomial in Eaclided interace. From the viscours of the site of the observation of the site of the si

Source: Dell (2010)

Dell (2010): Proximate determinants of consumption

		Dependent Variable	
	Percent of District Labor Force in Agriculture—1993 (1)	Agricultural Household Sells Part of Produce in Markets—1994 (2)	Household Memb Employed Outsid the Agricultural Unit—1994 (3)
	Panel A. Cubic Polynomia	l in Latitude and Longitud	e
Mita	0.211 (0.140)	-0.074** (0.036)	-0.013 (0.032)
R^2	0.177	0.176	0.010
	Panel B. Cubic Polynor	nial in Distance to Potosí	
Mita	0.101	-0.208***	-0.033
	(0.061)	(0.030)	(0.020)
R^2	0.112	0.144	0.008
	Panel C. Cubic Polynomial	in Distance to Mita Bounda	ary
Mita	0.092*	-0.225^{***}	-0.038**
	(0.054)	(0.032)	(0.018)
R^2	0.213	0.136	0.006
Geo. controls	yes	yes	yes
Boundary F.E.s	yes	yes	yes
Mean dep. var.	0.697	0.173	0.245
Clusters	179	178	182
Observations	179	160,990	183,596

CONSUMPTION CHANNELS^a

^aRobust standard errors, adjusted for clustering by district in columns 2 and 3, are in parentheses. The dependent variable in column 1 is the percentage of the district's balanch force engaged in agriculture as a primary occupation (NEI (1993)), in column 2 it is an indicator equal to 1 if at least one member of the buschelod pursus secondary employment and in column 3 it is an indicator equal to 1 if at least one member of the buschelod pursus secondary employment outside the agricultural unit (NEI (1994)). Fund A includes a cube polynomial in Eufedican distance to the nearest point on the main observation's distance tappila. The fundes a cube polynomial in Eufedican distance to the nearest point on the main beycare to the district's oppolation. 66% of the observation's distance to the nearest point on the main the square nord of the district's oppolation. 66% of the observations's distance, for the observation's distance, and other and a strain a strain and the strain of the district's oppolation. 66% of the observations's distance to the ania et a main distance form the observation's distance of the district's oppolation. 66% of the observations's distance in a term and in a term and a distance of the district's oppolation. 66% of the observations's distance is a strain of the anian of the observation's distance and a strain a term and a distance of the district's oppolation. 66% of the observations's distance and a strain a term and a distance of the distance's oppolation. 66% of the observations's distance and a strain term and anian of the district's oppolation. 66% of the observations's distance and a strain distance and anian distance and a strain distanc

Growth 000000000000000 History

Dell (2010): Discussion

- ► Long-term presence of large landowners ⇒ stable land tenure system ⇒ uparrow public goods provision
 - Note the contrast to Sokoloff and Engermann (2000): there large landowners associated with inequality and underdevelopment. Why?
 - ► Here large landowners secure property rights + lobby with government for access to public goods subsidies
 - Small-holders without property rights, inequality instituted by land seizures. In contrast Sokoloff and Engermann (2000) assume secure, enfranchised small-holders as a counterfactual to South Americas large landowners.
- Exploring constraints on how the state can be used to shape economic interactions maybe a better starting point than land inequality for modeling Latin America's long-run growth.

Growth 000000000000000

Culture 00000000000000000000000

Word of caution

- Do not take any single explanation of historical theories of development as a universal fact!
- Big ideas sell well, but many paths could have been just due to mere coincidence, luck, or many other potential explanations:
 - See wide heterogeneity of economic outcomes for countries with very different social infrastructure (Hall and Jones, 1999), across South American countries (Sokoloff and Engerman, 2000), or in slave trade numbers (Nunn, 2008).